J. Mater. Sci. Technol. ›› 2022, Vol. 121: 52-66.DOI: 10.1016/j.jmst.2021.11.064
• Research Article • Previous Articles Next Articles
Sithiprumnea Dula,*(), Brenda J. Alonso Gutierrezb,c, Alessandro Pegorettia, Jaime Alvarez-Quintanab, Luca Fambria,*(
)
Received:
2021-07-31
Revised:
2021-11-04
Accepted:
2021-11-06
Published:
2022-09-10
Online:
2022-03-08
Contact:
Sithiprumnea Dul,Luca Fambri
About author:
*E-mail addresses: sithiprumnea.dul@unitn.it (S. Dul),Sithiprumnea Dul, Brenda J. Alonso Gutierrez, Alessandro Pegoretti, Jaime Alvarez-Quintana, Luca Fambri. 3D printing of ABS Nanocomposites. Comparison of processing and effects of multi-wall and single-wall carbon nanotubes on thermal, mechanical and electrical properties[J]. J. Mater. Sci. Technol., 2022, 121: 52-66.
Fig. 1. Number of publications in the field of additive manufacturing and its integration with composites and nanocomposites from Web of ScienceTM in the last decade (up to October 30th, 2021).
Nanoparticle | Manufacturer | Density (g/cm3) | Length (μm) | Diameter (nm) | Aspect ratio | Surface area (m2/g) | Carbon purity (%) |
---|---|---|---|---|---|---|---|
MWCNT-NC7000 | Nanocyl, Belgium | 2.15 ± 0.03* | 1.5 | 9.5 | 158 | 250-300 | >90 |
SWCNT-TUBALL | TUBALL, USA | 1.877** | 5 | 1.6 ± 0.4 | 3125 | >300 | >80 |
Table 1. Properties of commercial single-walled and multi-walled carbon nanotubes according to the manufacturer.
Nanoparticle | Manufacturer | Density (g/cm3) | Length (μm) | Diameter (nm) | Aspect ratio | Surface area (m2/g) | Carbon purity (%) |
---|---|---|---|---|---|---|---|
MWCNT-NC7000 | Nanocyl, Belgium | 2.15 ± 0.03* | 1.5 | 9.5 | 158 | 250-300 | >90 |
SWCNT-TUBALL | TUBALL, USA | 1.877** | 5 | 1.6 ± 0.4 | 3125 | >300 | >80 |
Fig. 5. (a) 3D model of 1BA dumbbells (thickness of 2 mm and 0.6 mm) and plate (30 × 5 × 2 mm3), (b) the arrangement of dumbbells, (c) the detail of infill pattern [+45°/-45°] and (d) 3D-printed samples.
Samples | X (mm) | Y (mm) | Z (mm) | Deposition time of a single layer (s) | Number of layers | Total time (min) | Analysis |
---|---|---|---|---|---|---|---|
Dumbbell 1 | 75 | 5-10a | 2 | 145 | 10 | 24.2 | Tensile |
Dumbbell 2 | 75 | 5-10a | 0.6 | 145 | 3 | 7.3 | Creep |
Dumbbell 3 | 75 | 5-10a | 0.6 | 145 | 1 | 2.4 | Resistivity |
Parallelepiped | 30 | 5 | 2 | 55 | 10 | 9.2 | Density, VST and resistivity |
Table 2. Dimensions, geometrical parameters in production, and analysis of FFF specimens.
Samples | X (mm) | Y (mm) | Z (mm) | Deposition time of a single layer (s) | Number of layers | Total time (min) | Analysis |
---|---|---|---|---|---|---|---|
Dumbbell 1 | 75 | 5-10a | 2 | 145 | 10 | 24.2 | Tensile |
Dumbbell 2 | 75 | 5-10a | 0.6 | 145 | 3 | 7.3 | Creep |
Dumbbell 3 | 75 | 5-10a | 0.6 | 145 | 1 | 2.4 | Resistivity |
Parallelepiped | 30 | 5 | 2 | 55 | 10 | 9.2 | Density, VST and resistivity |
Parameter | Value |
---|---|
Nozzle diameter | 0.4 mm |
Nozzle temperature | 280 °C |
Bed temperature | 110 °C |
Nozzle speed | 40 mm/s |
Layer height | 0.2 mm |
Raster angle | +45°/-45° |
Infill density | 100% |
Number of contours | 2 |
Table 3. 3D printing parameters by fused filament fabrication technique for specimen's production.
Parameter | Value |
---|---|
Nozzle diameter | 0.4 mm |
Nozzle temperature | 280 °C |
Bed temperature | 110 °C |
Nozzle speed | 40 mm/s |
Layer height | 0.2 mm |
Raster angle | +45°/-45° |
Infill density | 100% |
Number of contours | 2 |
Samples | Filament diameter (mm) | Fibers diameter (μm) | Skirt**diameter (μm) | Filament linear density (tex) | Fiber linear density (tex) | Skirt linear density (tex) | Feeding OFFeed | Spinning OFSpin | Swelling SWSpin | Total OFTot | DRSpin |
---|---|---|---|---|---|---|---|---|---|---|---|
ABS* | 1725 ± 14 | 648 ± 21 | // | 2433 | 343 | // | 18.6 | 0.38 | 2.6 | 7.1 | // |
M5 | 1772 ± 13 | 450 ± 1 | 275 | 2637 | 170 | 63 | 19.6 | 0.79 | 1.3 | 15.5 | 2.7 |
M7.5 | 1783 ± 7 | 448 ± 2 | 274 | 2704 | 171 | 64 | 19.9 | 0.80 | 1.3 | 15.9 | 2.7 |
M10 | 1782 ± 31 | 424 ± 3 | 281 | 2739 | 155 | 68 | 19.9 | 0.89 | 1.1 | 17.6 | 2.3 |
S5 | 1744 ± 16 | 419 ± 3 | 282 | 2543 | 147 | 66 | 19.0 | 0.91 | 1.1 | 17.3 | 2.2 |
S7.5 | 1795 ± 1 | 410 ± 2 | 271 | 2725 | 142 | 62 | 20.1 | 0.95 | 1.1 | 19.2 | 2.3 |
S10 | 1779 ± 10 | 396 ± 5 | 277 | 2710 | 134 | 66 | 19.8 | 1.02 | 1.0 | 20.2 | 2.0 |
Table 4. Dimension and linear density of various extrudates produced from ABS and its nanocomposites, i.e. filaments (from single screw extruder), fibers and skirt (from 3D printing). Orientation factors OF and draw ratio DR during 3D extrusion calculated according to Equations 1 - 5.
Samples | Filament diameter (mm) | Fibers diameter (μm) | Skirt**diameter (μm) | Filament linear density (tex) | Fiber linear density (tex) | Skirt linear density (tex) | Feeding OFFeed | Spinning OFSpin | Swelling SWSpin | Total OFTot | DRSpin |
---|---|---|---|---|---|---|---|---|---|---|---|
ABS* | 1725 ± 14 | 648 ± 21 | // | 2433 | 343 | // | 18.6 | 0.38 | 2.6 | 7.1 | // |
M5 | 1772 ± 13 | 450 ± 1 | 275 | 2637 | 170 | 63 | 19.6 | 0.79 | 1.3 | 15.5 | 2.7 |
M7.5 | 1783 ± 7 | 448 ± 2 | 274 | 2704 | 171 | 64 | 19.9 | 0.80 | 1.3 | 15.9 | 2.7 |
M10 | 1782 ± 31 | 424 ± 3 | 281 | 2739 | 155 | 68 | 19.9 | 0.89 | 1.1 | 17.6 | 2.3 |
S5 | 1744 ± 16 | 419 ± 3 | 282 | 2543 | 147 | 66 | 19.0 | 0.91 | 1.1 | 17.3 | 2.2 |
S7.5 | 1795 ± 1 | 410 ± 2 | 271 | 2725 | 142 | 62 | 20.1 | 0.95 | 1.1 | 19.2 | 2.3 |
S10 | 1779 ± 10 | 396 ± 5 | 277 | 2710 | 134 | 66 | 19.8 | 1.02 | 1.0 | 20.2 | 2.0 |
Samples | CNT vol. (%) | Apparent density (g/cm3) | Theoreticaldensity (g/cm3) | VV (%) |
---|---|---|---|---|
ABS-3D | 0.00 | 0.98 ± 0.01 | 1.041 | 6.2 ± 0.9 |
M5-3D | 2.48 | 1.00 ± 0.01 | 1.069 | 6.3 ± 0.9 |
M7.5-3D | 3.78 | 0.99 ± 0.01 | 1.083 | 8.8 ± 1.0 |
M10-3D | 5.10 | 1.01 ± 0.01 | 1.098 | 8.3 ± 1.0 |
S5-3D | 2.84 | 0.98 ± 0.01 | 1.065 | 8.4 ± 1.0 |
S7.5-3D | 4.30 | 0.99 ± 0.01 | 1.077 | 7.7 ± 1.0 |
S10-3D | 5.80 | 0.99 ± 0.01 | 1.090 | 8.8 ± 0.6 |
Table 5. Composition of 3D printed ABS and its nanocomposites (in percentage by wt. %). Density and a void fraction (Vv) as a function of CNT content.
Samples | CNT vol. (%) | Apparent density (g/cm3) | Theoreticaldensity (g/cm3) | VV (%) |
---|---|---|---|---|
ABS-3D | 0.00 | 0.98 ± 0.01 | 1.041 | 6.2 ± 0.9 |
M5-3D | 2.48 | 1.00 ± 0.01 | 1.069 | 6.3 ± 0.9 |
M7.5-3D | 3.78 | 0.99 ± 0.01 | 1.083 | 8.8 ± 1.0 |
M10-3D | 5.10 | 1.01 ± 0.01 | 1.098 | 8.3 ± 1.0 |
S5-3D | 2.84 | 0.98 ± 0.01 | 1.065 | 8.4 ± 1.0 |
S7.5-3D | 4.30 | 0.99 ± 0.01 | 1.077 | 7.7 ± 1.0 |
S10-3D | 5.80 | 0.99 ± 0.01 | 1.090 | 8.8 ± 0.6 |
Samples | CNT vol. (%) | VSTTop (°C) | VSTBottom (°C) | Tg* (°C) | VST -Tg** (°C) |
---|---|---|---|---|---|
ABS-3D | 0.00 | 111.9 ± 0.7 | 110.9 ± 0.7 | 107.1 | 4.4 |
M5-3D | 2.48 | 114.4 ± 0.7 | 114.2 ± 1.0 | 109.1 | 5.3 |
M7.5-3D | 3.78 | 114.4 ± 1.0 | 113.8 ± 1.0 | 109.1 | 5.1 |
M10-3D | 5.10 | 118.6 ± 1.1 | 117.4 ± 0.3 | 109.7 | 8.3 |
S5-3D | 2.84 | 123.2 ± 0.8 | 121.7 ± 1.4 | 109.5 | 13.0 |
S7.5-3D | 4.30 | 126.7 ± 0.3 | 125.5 ± 1.4 | 109.5 | 16.7 |
S10-3D | 5.80 | 129.4 ± 1.4 | 129.0 ± 1.3 | 108.8 | 20.4 |
Table 6. Vicat Softening Temperature (VST) of ABS and its nanocomposites as a function of wt. % composition.
Samples | CNT vol. (%) | VSTTop (°C) | VSTBottom (°C) | Tg* (°C) | VST -Tg** (°C) |
---|---|---|---|---|---|
ABS-3D | 0.00 | 111.9 ± 0.7 | 110.9 ± 0.7 | 107.1 | 4.4 |
M5-3D | 2.48 | 114.4 ± 0.7 | 114.2 ± 1.0 | 109.1 | 5.3 |
M7.5-3D | 3.78 | 114.4 ± 1.0 | 113.8 ± 1.0 | 109.1 | 5.1 |
M10-3D | 5.10 | 118.6 ± 1.1 | 117.4 ± 0.3 | 109.7 | 8.3 |
S5-3D | 2.84 | 123.2 ± 0.8 | 121.7 ± 1.4 | 109.5 | 13.0 |
S7.5-3D | 4.30 | 126.7 ± 0.3 | 125.5 ± 1.4 | 109.5 | 16.7 |
S10-3D | 5.80 | 129.4 ± 1.4 | 129.0 ± 1.3 | 108.8 | 20.4 |
Samples | Mass Loss (%) at 280 °C | Tonset (°C) | Td,max (°C) | MMLR (%/°C) | Residue(%) | ||
---|---|---|---|---|---|---|---|
Empty Cell | Empty Cell | Empty Cell | Empty Cell | Empty Cell | at 475 °C | at 575 °C | at 700 °C |
ABS-3D | 0.52 | 414.6 | 433.3 | 2.15 | 2.8 | 0.6 | 0.0 |
M5-3D | 0.55 | 412.7 | 435.2 | 1.77 | 10.7 | 6.5 | 6.0 |
M7.5-3D | 0.27 | 412.3 | 433.3 | 1.73 | 13.4 | 9.3 | 9.0 |
M10-3D | 0.48 | 409.2 | 430.2 | 1.64 | 15.2 | 11.7 | 11.4 |
S5-3D | 0.35 | 412.7 | 436.0 | 1.77 | 11.5 | 7.5 | 7.1 |
S7.5-3D | 0.62 | 415.7 | 435.8 | 1.78 | 13.5 | 9.6 | 9.3 |
S10-3D | 0.37 | 407.5 | 432.5 | 1.70 | 16.0 | 12.5 | 12.2 |
MWCNT | - | - | - | - | 96.4 | 95.6 | 94.1 |
SWCNT | - | - | - | - | 96.2 | 95.5 | 94.5 |
Table 7. TGA data of pure 3D-printed nanocomposite in a nitrogen atmosphere.
Samples | Mass Loss (%) at 280 °C | Tonset (°C) | Td,max (°C) | MMLR (%/°C) | Residue(%) | ||
---|---|---|---|---|---|---|---|
Empty Cell | Empty Cell | Empty Cell | Empty Cell | Empty Cell | at 475 °C | at 575 °C | at 700 °C |
ABS-3D | 0.52 | 414.6 | 433.3 | 2.15 | 2.8 | 0.6 | 0.0 |
M5-3D | 0.55 | 412.7 | 435.2 | 1.77 | 10.7 | 6.5 | 6.0 |
M7.5-3D | 0.27 | 412.3 | 433.3 | 1.73 | 13.4 | 9.3 | 9.0 |
M10-3D | 0.48 | 409.2 | 430.2 | 1.64 | 15.2 | 11.7 | 11.4 |
S5-3D | 0.35 | 412.7 | 436.0 | 1.77 | 11.5 | 7.5 | 7.1 |
S7.5-3D | 0.62 | 415.7 | 435.8 | 1.78 | 13.5 | 9.6 | 9.3 |
S10-3D | 0.37 | 407.5 | 432.5 | 1.70 | 16.0 | 12.5 | 12.2 |
MWCNT | - | - | - | - | 96.4 | 95.6 | 94.1 |
SWCNT | - | - | - | - | 96.2 | 95.5 | 94.5 |
Samples | Tensile modulus E (MPa) | Yield stress σy (MPa) | Yield strain εy (%) | Stress at break σb (MPa) | Elongation at break εb (%) | Tensile Energy to break TEB (MJ/m3) | Normalized Modulus* (--) |
---|---|---|---|---|---|---|---|
ABS-3D | 2278 ± 118 | 38.0 ± 1.3 | 5.2 ± 0.4 | 31.2 ± 0.8 | 13.9 ± 3.1 | 4.09 ± 1.13 | n.d. |
M5-3D | 2429 ± 194 | 42.5 ± 1.4 | 4.3 ± 0.2 | 38.4 ± 1.3 | 5.6 ± 0.4 | 1.60 ± 0.19 | 1.3 |
M7.5-3D | 3119 ± 110 | - | - | 46.6 ± 2.6 | 4.2 ± 0.6 | 1.16 ± 0.28 | 4.9 |
M10-3D | 3213 ± 13 | - | - | 45.0 ± 4.6 | 3.6 ± 0.5 | 0.95 ± 0.25 | 4.1 |
S5-3D | 3507 ± 183 | - | - | 38.7 ± 3.0 | 2.9 ± 0.4 | 0.59 ± 0.11 | 10.8 |
S7.5-3D | 6434 ± 254 | - | - | 40.5 ± 2.5 | 2.6 ± 0.2 | 0.59 ± 0.09 | 24.3 |
S10-3D | 7045 ± 261 | - | - | 40.3 ± 2.2 | 1.8 ± 0.1 | 0.40 ± 0.03 | 20.9 |
Table 8. Comparison of the tensile properties of ABS/SWCNT and ABS/MWCNT nanocomposites of 3D-printed samples.
Samples | Tensile modulus E (MPa) | Yield stress σy (MPa) | Yield strain εy (%) | Stress at break σb (MPa) | Elongation at break εb (%) | Tensile Energy to break TEB (MJ/m3) | Normalized Modulus* (--) |
---|---|---|---|---|---|---|---|
ABS-3D | 2278 ± 118 | 38.0 ± 1.3 | 5.2 ± 0.4 | 31.2 ± 0.8 | 13.9 ± 3.1 | 4.09 ± 1.13 | n.d. |
M5-3D | 2429 ± 194 | 42.5 ± 1.4 | 4.3 ± 0.2 | 38.4 ± 1.3 | 5.6 ± 0.4 | 1.60 ± 0.19 | 1.3 |
M7.5-3D | 3119 ± 110 | - | - | 46.6 ± 2.6 | 4.2 ± 0.6 | 1.16 ± 0.28 | 4.9 |
M10-3D | 3213 ± 13 | - | - | 45.0 ± 4.6 | 3.6 ± 0.5 | 0.95 ± 0.25 | 4.1 |
S5-3D | 3507 ± 183 | - | - | 38.7 ± 3.0 | 2.9 ± 0.4 | 0.59 ± 0.11 | 10.8 |
S7.5-3D | 6434 ± 254 | - | - | 40.5 ± 2.5 | 2.6 ± 0.2 | 0.59 ± 0.09 | 24.3 |
S10-3D | 7045 ± 261 | - | - | 40.3 ± 2.2 | 1.8 ± 0.1 | 0.40 ± 0.03 | 20.9 |
Fig. 12. Elastic modulus of nanocomposites ABS/MWCNT (a) and ABS/SWCNT (b). Continuous (___) and dash lines (_ _ _) and dot lines (…) represent prediction according to the Halpin‐Tsai models with parallel, 2D random and 3D random orientation, respectively.
Fig. 13. Normalized modulus of 3D-printed nanocomposites, as a function of different carbonaceous wt.% content. ABS/MWCNT and ABS/SWCNT of the present study compared to literature data, such as CF in ABS [44,45] and in PA [46]; r-GO in PLA[7]; CNT in PEEK[18], PLA [47] and in ABS [25,48].
Samples | Del (GPa-1) | Dve, 3600s (GPa-1) | Dtot, 3600s (GPa-1) | De (GPa-1) | k (GPa-1s-n) | n | R |
---|---|---|---|---|---|---|---|
ABS-3D | 0.728 | 0.262 | 0.989 | 0.786 | 0.035 | 0.214 | 0.994 |
M5-3D | 0.696 | 0.235 | 0.931 | 0.759 | 0.018 | 0.279 | 0.995 |
M7.5-3D | 0.658 | 0.203 | 0.861 | 0.726 | 0.009 | 0.328 | 0.989 |
M10-3D | 0.621 | 0.209 | 0.830 | 0.681 | 0.011 | 0.319 | 0.995 |
S5-3D | 0.523 | 0.210 | 0.733 | 0.540 | 0.054 | 0.152 | 0.988 |
S7.5-3D | 0.407 | 0.148 | 0.555 | 0.424 | 0.007 | 0.366 | 0.994 |
S10-3D | 0.259 | 0.011 | 0.372 | 0.298 | 0.008 | 0.265 | 0.928 |
Table 9. Creep test of neat ABS and its nanocomposites as measured on 3D-printed samples and fitting parameters (Equation (18)).
Samples | Del (GPa-1) | Dve, 3600s (GPa-1) | Dtot, 3600s (GPa-1) | De (GPa-1) | k (GPa-1s-n) | n | R |
---|---|---|---|---|---|---|---|
ABS-3D | 0.728 | 0.262 | 0.989 | 0.786 | 0.035 | 0.214 | 0.994 |
M5-3D | 0.696 | 0.235 | 0.931 | 0.759 | 0.018 | 0.279 | 0.995 |
M7.5-3D | 0.658 | 0.203 | 0.861 | 0.726 | 0.009 | 0.328 | 0.989 |
M10-3D | 0.621 | 0.209 | 0.830 | 0.681 | 0.011 | 0.319 | 0.995 |
S5-3D | 0.523 | 0.210 | 0.733 | 0.540 | 0.054 | 0.152 | 0.988 |
S7.5-3D | 0.407 | 0.148 | 0.555 | 0.424 | 0.007 | 0.366 | 0.994 |
S10-3D | 0.259 | 0.011 | 0.372 | 0.298 | 0.008 | 0.265 | 0.928 |
Fig. 15. Volume electrical resistivity in (Ω cm) of ABS nanocomposite of filaments, 3D-printed samples infill [± 45°] (1 layer and 10 layers) and Skirt [0°] by four-probe method (a) and 3D-printed samples infill [± 45°] 10 layers in XY-direction and Z-direction by two probe method (b).
Samples | Tensile modulus (%) | Stress at Break (%) | Elongation at Break (%) | VST (%) | Conductivity (%) |
---|---|---|---|---|---|
ABS | 103 | 89 | 54 | 100 | // |
M5 | 100 | 97 | 160 | 101 | 0.4 |
M7.5 | 120 | 99 | 127 | 99 | 4.9 |
M10 | 116 | 95 | 138 | 102 | 20.9 |
S5 | 67 | 74 | 207 | 102 | 0.4 |
S7.5 | 95 | 75 | 236 | 102 | 0.3 |
S10 | 114 | 74 | 150 | 98 | 0.6 |
Table 10. Comparison of relative properties of 3D-printed samples versus extruded filaments or plates (VST), as a function of MWCNT and SWCNT in ABS nanocomposites, according to Eq.19.
Samples | Tensile modulus (%) | Stress at Break (%) | Elongation at Break (%) | VST (%) | Conductivity (%) |
---|---|---|---|---|---|
ABS | 103 | 89 | 54 | 100 | // |
M5 | 100 | 97 | 160 | 101 | 0.4 |
M7.5 | 120 | 99 | 127 | 99 | 4.9 |
M10 | 116 | 95 | 138 | 102 | 20.9 |
S5 | 67 | 74 | 207 | 102 | 0.4 |
S7.5 | 95 | 75 | 236 | 102 | 0.3 |
S10 | 114 | 74 | 150 | 98 | 0.6 |
[1] | K.V. Wong, A. Hernandez, ISRN Mech. Eng. (2012) (2012) 30-38. |
[2] |
S. Dul, L. Fambri, A. Pegoretti, Compos. Part A Appl. Sci. Manuf. 85 (2016) 181-191.
DOI URL |
[3] |
I. Durgun, R. Ertan, Rapid Prototyp. J. 20 (2014) 228-235.
DOI URL |
[4] | S.J. Leigh, R.J. Bradley, C.P. Purssell, D.R. Billson, D.A. Hutchins, PLoS ONE 7 (2012) 4 9365-4 9371. |
[5] |
J.T. Muth, D.M. Vogt, R.L. Truby, Y. Mengüç, D.B. Kolesky, R.J. Wood, J.A. Lewis, Adv. Mater. 26 (2014) 6307-6312.
DOI URL |
[6] |
K. Sun, T.-S. Wei, B.Y. Ahn, Y.J. Seo, S.J. Dillon, J.A. Lewis, Adv. Mater. 25 (2013) 4539-4543.
DOI URL |
[7] |
D. Zhang, B. Chi, B. Li, Z. Gao, Y. Du, J. Guo, J. Wei, Synth. Met. 217 (2016) 79-86.
DOI URL |
[8] | K. Chizari, M. Arjmand, Z. Liu, U. Sundararaj, D. Therriault, Mater. Today Com-mun. 11 (2017) 112-118. |
[9] | E. Ivanov, H.Xia Kotsilkova, Y. Chen, R.K. Donato, K. Donato, A.P. Godoy, R. Di Maio, C. Silvestre, S. Cimmino, Appl.Sci. 9(2019) |
[10] | G. Spinelli, P. Lamberti, V. Tucci, R. Kotsilkova, S. Tabakova, R. Ivanova, P. An-gelova, V. Angelov, E. Ivanov, R. Di Maio, C. Silvestre, D. Meisak, A. Paddub-skaya, P. Kuzhir, Materials 11(2018) |
[11] | G. Spinelli, P. Lamberti, V. Tucci, R. Kotsilkova, E. Ivanov, D. Menseidov, C. Nad-deo, V. Romano, L. Guadagno, R. Adami, D. Mesisak, D. Bychanok, P. Kuzhir, Materials 12 (2019) |
[12] | M. Petousis, N. Vidakis, L. Tzounis, E. Velidakis, N. Mountakis, S.A. Grammatikos, C. 7 (2021) |
[13] |
D. Yuan, D. Pedrazzoli, I. Manas-Zloczower, Inter. Polym. Process. 31 (2016) 554-561.
DOI URL |
[14] |
J. Li, P.-S. Wong, J.-K. Kim, Mater. Sci. Eng.. A 483-484 (2008) 660-663.
DOI URL |
[15] |
S.Y. Yang, W.-N. Lin, Y.-L. Huang, H.-W. Tien, J.-Y. Wang, C.-C.M. Ma, S.-M. Li, Y.-S. Wang, Carbon 49 (2011) 793-803.
DOI URL |
[16] | P.-N. Wang, T.-H. Hsieh, C.-L. Chiang, M.-Y. Shen, J. Nanomater. 2015 (2015) |
[17] |
F. Daniel, N.H. Patoary, A.L. Moore, L. Weiss, A.D. Radadia, Int. J. Adv. Manuf. Tech. 99 (2018) 1215-1224.
DOI URL |
[18] |
J. Gonçalves, P. Lima, B. Krause, P. Pötschke, U. Lafont, J. Gomes, C. Abreu, M. Paiva, J. Covas, Polymers 10 (2018) 925-944.
DOI URL |
[19] | S. Kumar, L.L. Sun, S. Caceres, B. Li, W. Wood, A. Perugini, R.G. Maguire, W.H. Zhong, Nanotechnology 21 (2010) |
[20] |
P.-G. Ren, Y.-Y. Di, Q. Zhang, L. Li, H. Pang, Z.-M. Li, Macromol. Mater. Eng. 297 (2012) 437-443.
DOI URL |
[21] |
H. Oxfall, G. Ariu, T. Gkourmpis, R.W. Rychwalski, M. Rigdahl, eXPRESS Polym. Lett. 9 (2015) 66-76.
DOI URL |
[22] | B.J.A. Gutierrez, S. Dul, A. Pegoretti, J. Alvarez-Quintana, L. Fambri, J. Carbon Res. 7 (2021) |
[23] |
H.K. Sezer, H.O. Eren, J. Manuf. Process. 37 (2019) 339-347.
DOI URL |
[24] | sS. P. Versalis, A sinkral®f 322-abs product data (2021) https://www.Materialdatacenter.Com/ms/en/tradenames/sinkral/versalis±s%252ep%252ea/sinkral%c2%ae±f±332/c6da6726/1895 January 18. |
[25] |
S. Dul, L. Fambri, A. Pegoretti, Nanomaterials 9 (2018) 49-73.
DOI URL |
[26] | Graphene nanotubes tuball tm product data (January 18, 2021) https://tuball.Com/additives/tuball/. |
[27] |
S. Dul, A. Pegoretti, L. Fambri, Nanomaterials 8 (2018) 674-693.
DOI URL |
[28] | A.V. Savin, E.A. Korznikova, S.V. Dmitriev, Mech. Mater. 137 (2019) |
[29] | I. Evazzade, I.P. Lobzenko, D. Saadatmand, E.A. Korznikova, K. Zhou, B. Liu, S.V. Dmitriev, Nanotechnology 29 (2018) |
[30] |
J. Liang, Y. Huang, L. Zhang, Y. Wang, Y. Ma, T. Guo, Y. Chen, Adv. Funct. Mater. 19 (2009) 2297-2302.
DOI URL |
[31] |
J.C. Halpin, J.L. Kardos, Polym. Eng. Sci. 16 (1976) 344-352.
DOI URL |
[32] |
K. Kalaitzidou, H. Fukushima, H. Miyagawa, L.T. Drzal, Polym. Eng. Sci. 47 (2007) 1796-1803.
DOI URL |
[33] |
A. Duguay, J. Nader, A. Kiziltas, D. Gardner, H. Dagher, Appl. Nanosci. 4 (2014) 279-291.
DOI URL |
[34] |
J.A. King, D.R. Klimek, I. Miskioglu, G.M. Odegard, J. Compos. Mater. 49 (2015) 659-668.
DOI URL |
[35] | J.C. Halpin, T.W. Tsai, in: Effects of environmental factors on composite mate-rials, Air Force Materials Laboratory Rept, U.S, 1967, p. 423. AFML-TR-67. |
[36] |
J.C. Halpin, J. Compos. Mater. 3 (1969) 732-734.
DOI URL |
[37] | M.A. Van Es, Polymer-clay nanocomposites: The importance of particle dimen-sions M.A., Delft University of Technology, 2001 Ph.D. Thesis. |
[38] |
H.M. Chong, S.J. Hinder, A.C. Taylor, J. Mater. Sci. 51 (2016) 8764-8790.
DOI URL |
[39] |
T.D. Fornes, D.R. Paul, Polymer 44 (2003) 4993-5013.
DOI URL |
[40] |
M. Karevan, R.V. Pucha, M.A. Bhuiyan, K. Kalaitzidou, Carbon. Lett. 11 (2010) 325-331.
DOI URL |
[41] |
D. Pedrazzoli, A. Pegoretti, J. Reinf. Plast. Compos. 33 (2014) 1682-1695.
DOI URL |
[42] |
A. Dorigato, Y. Dzenis, Mech. Mater. 61 (2013) 79-90.
DOI URL |
[43] |
O. Maruzhenko, Y. Mamunya, G. Boiteux, S. Pusz, U. Szeluga, Int. J. Heat Mass Transf. 138 (2019) 75-84.
DOI URL |
[44] |
L.J. Love, V. Kunc, O. Rios, C.E. Duty, A.M. Elliott, B.K. Post, R.J. Smith, C.A. Blue, J. Mater. Res. 29 (2014) 1893-1898.
DOI URL |
[45] | D. Jiang, D.E. Smith, Addit. Manuf. 18 (2017) 84-94. |
[46] |
S. Dul, L. Fambri, A. Pegoretti, J. Mater. Eng. Performance. 30 (2021) 5066-5085.
DOI URL |
[47] | R. Kotsilkova, I. Petrova-Doycheva, D. Menseidov, E. Ivanov, A. Paddubskaya, P. Kuzhir, Composi. Sci. Technol. 181 (2019) |
[48] |
S. Dul, L.G. Ecco, A. Pegoretti, L. Fambri, Polymers 12 (2020) 101-120.
DOI URL |
[49] |
G. Williams, D.C. Watts, D.C. Trans, Faraday Soc. 66 (1970) 80-85.
DOI URL |
[50] |
W.N. Findley, Polym. Eng. Sci. 27 (1987) 582-585.
DOI URL |
[51] |
B.J.A. Gutiérrez, L.G.N. González, J.A. Quintana, J. Mater. Sci. 56 (2021) 17112-17130.
DOI URL |
[1] | Jun Hwan Moon, Seunghyun Kim, Taesoon Kim, Yoo Sang Jeon, Yanghee Kim, Jae-Pyoung Ahn, Young Keun Kim. Electrical resistivity evolution in electrodeposited Ru and Ru-Co nanowires [J]. J. Mater. Sci. Technol., 2022, 105(0): 17-25. |
[2] | J.C. Wang, Y.J. Liu, S.X. Liang, Y.S. Zhang, L.Q. Wang, T.B. Sercombe, L.C. Zhang. Comparison of microstructure and mechanical behavior of Ti-35Nb manufactured by laser powder bed fusion from elemental powder mixture and prealloyed powder [J]. J. Mater. Sci. Technol., 2022, 105(0): 1-16. |
[3] | Xuan Kong, Yang Liu, Minghui Chen, Tao Zhang, Qunchang Wang, Fuhui Wang. Heterostructured NiCr matrix composites with high strength and wear resistance [J]. J. Mater. Sci. Technol., 2022, 105(0): 142-152. |
[4] | Zheng Zhang, Wenming Jiang, Guangyu Li, Junlong Wang, Feng Guan, Guoliang Jie, Zitian Fan. Effect of La on microstructure, mechanical properties and fracture behavior of Al/Mg bimetallic interface manufactured by compound casting [J]. J. Mater. Sci. Technol., 2022, 105(0): 214-225. |
[5] | Peng Gao, Shuo Sun, Heng Li, Ranming Niu, Shuang Han, Hongxiang Zong, Hao Wang, Jianshe Lian, Xiaozhou Liao. Ultra-strong and thermally stable nanocrystalline CrCoNi alloy [J]. J. Mater. Sci. Technol., 2022, 106(0): 1-9. |
[6] | Xiaolin Li, Xiaoxiao Hao, Chi Jin, Qi Wang, Xiangtao Deng, Haifeng Wang, Zhaodong Wang. The determining role of carbon addition on mechanical performance of a non-equiatomic high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 110(0): 167-177. |
[7] | Fei Guo, Weijiu Huang, Xusheng Yang, Haipeng Dong, Hang Yu, Qiuyu Chen, Li Hu, Luyao Jiang. Variation of mechanical properties and microstructure of hot-rolled AA2099 Al-Li alloy induced by the precipitation during preheating process [J]. J. Mater. Sci. Technol., 2022, 110(0): 198-209. |
[8] | Pengfei Ji, Bohan Chen, Shuguang Liu, Bo Li, Chaoqun Xia, Xinyu Zhang, Mingzhen Ma, Riping Liu. Controlling the mechanical properties and corrosion behavior of biomedical TiZrNb alloys by combining recrystallization and spinodal decomposition [J]. J. Mater. Sci. Technol., 2022, 110(0): 227-238. |
[9] | J. Ding, A. Inoue, F.L. Kong, S.L. Zhu, Y.L. Pu, E. Shalaan, A.A. Al-Ghamdi, A.L. Greer. Novel heating-and deformation-induced phase transitions and mechanical properties for multicomponent Zr50M50, Zr50(M,Ag)50 and Zr50(M,Pd)50 (M = Fe,Co,Ni,Cu) amorphous alloys [J]. J. Mater. Sci. Technol., 2022, 104(0): 109-118. |
[10] | Zhaoxin Du, Qiwei He, Ruirun Chen, Fei Liu, Jingyong Zhang, Fei Yang, Xueping Zhao, Xiaoming Cui, Jun Cheng. Rolling reduction -dependent deformation mechanisms and tensile properties in a β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 104(0): 183-193. |
[11] | Tianbing He, Tiwen Lu, Daniel Şopu, Xiaoliang Han, Haizhou Lu, Kornelius Nielsch, Jürgen Eckert, Nevaf Ciftci, Volker Uhlenwinkel, Konrad Kosiba, Sergio Scudino. Mechanical behavior and deformation mechanism of shape memory bulk metallic glass composites synthesized by powder metallurgy [J]. J. Mater. Sci. Technol., 2022, 114(0): 42-54. |
[12] | Haibo Zhang, Metin Örnek, Simanta Lahkar, Shuangxi Song, Xiaodong Wang, Richard A. Haber, Kolan Madhav Reddy. Enhanced densification and mechanical properties of β-boron by in-situ formed boron-rich oxide [J]. J. Mater. Sci. Technol., 2022, 99(0): 148-160. |
[13] | Taiqian Mo, Zejun Chen, Dayu Zhou, Guangming Lu, Yongmeng Huang, Qing Liu. Effect of lamellar structural parameters on the bending fracture behavior of AA1100/AA7075 laminated metal composites [J]. J. Mater. Sci. Technol., 2022, 99(0): 28-38. |
[14] | Young-Kyun Kim, Kee-Ahn Lee. Effect of carrier gas species on the microstructure and compressive deformation behaviors of ultra-strong pure copper manufactured by cold spray additive manufacturing [J]. J. Mater. Sci. Technol., 2022, 97(0): 264-271. |
[15] | Jingbo Gao, Yuting Jin, Yongqiang Fan, Dake Xu, Lei Meng, Cong Wang, Yuanping Yu, Deliang Zhang, Fuhui Wang. Fabricating antibacterial CoCrCuFeNi high-entropy alloy via selective laser melting and in-situ alloying [J]. J. Mater. Sci. Technol., 2022, 102(0): 159-165. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||