J. Mater. Sci. Technol. ›› 2022, Vol. 107: 172-182.DOI: 10.1016/j.jmst.2021.08.032
• Research Article • Previous Articles Next Articles
Cunxiu Zhanga,b, Xiaolong Lua,d, Cong Wanga,c, Xudong Suia,c,d,*(), Yanfang Wangb, Haibin Zhoua,d, Junying Haoa,c,*(
)
Received:
2021-06-11
Revised:
2021-06-11
Accepted:
2021-06-11
Published:
2022-04-30
Online:
2022-04-28
Contact:
Xudong Sui,Junying Hao
About author:
jyhao@licp.cas.cn (J. Hao).Cunxiu Zhang, Xiaolong Lu, Cong Wang, Xudong Sui, Yanfang Wang, Haibin Zhou, Junying Hao. Tailoring the microstructure, mechanical and tribocorrosion performance of (CrNbTiAlV)Nx high-entropy nitride films by controlling nitrogen flow[J]. J. Mater. Sci. Technol., 2022, 107: 172-182.
Process parameters | Pre-cleaning | Deposited films | |||||
---|---|---|---|---|---|---|---|
Cr | HEFNs | ||||||
Current (A) | 0.4 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 |
N2 flow (sccm) | 0 | 0 | 0 | 8 | 18 | 38 | 58 |
Ar flow (sccm) | 18 | 18 | 18 | 18 | 18 | 18 | 18 |
Working Pressure (Torr) | 2.5 × 10-3 | 2.5 × 10-3 | 2.5 × 10-3 | 2.6 × 10-3 | 3.2 × 10-3 | 4.1 × 10-3 | 5.1 × 10-3 |
Bias (V) | - 450 | - 60 | - 126 | - 126 | - 126 | - 126 | - 126 |
Time (min) | 30 | 8 | 240 | 240 | 240 | 240 | 240 |
Table 1 The details of the process parameters.
Process parameters | Pre-cleaning | Deposited films | |||||
---|---|---|---|---|---|---|---|
Cr | HEFNs | ||||||
Current (A) | 0.4 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 |
N2 flow (sccm) | 0 | 0 | 0 | 8 | 18 | 38 | 58 |
Ar flow (sccm) | 18 | 18 | 18 | 18 | 18 | 18 | 18 |
Working Pressure (Torr) | 2.5 × 10-3 | 2.5 × 10-3 | 2.5 × 10-3 | 2.6 × 10-3 | 3.2 × 10-3 | 4.1 × 10-3 | 5.1 × 10-3 |
Bias (V) | - 450 | - 60 | - 126 | - 126 | - 126 | - 126 | - 126 |
Time (min) | 30 | 8 | 240 | 240 | 240 | 240 | 240 |
Fig. 3. SEM cross-section and surface morphology of (CrNbTiAlV)Nx high-entropy films deposited under different nitrogen flows: (a, f) S0; (b, g) S8; (c, h) S18; (d, i) S38; (e, j) S58; (k) high magnification SEM image of S38 (in order to improve the resolution of the image, the sample was sprayed with gold for 60 s in advance).
Sample | Relative intensity | Average grain size (nm) | Lattice constant (Å) | |||
---|---|---|---|---|---|---|
(111) | (200) | (220) | (311) | |||
S8 | 216 | 41 | 24 | 5 | 12.41 | 4.26015 |
S18 | 680 | 152 | 182 | 28 | 14.05 | 4.31748 |
S38 | 25 | 5 | 7 | - | 11.74 | 4.32233 |
S58 | 114 | 8 | 35 | 9 | 13.30 | 4.30363 |
Table 2 Relative intensity of diffraction peaks, average grain sizes and lattice constant of (CrNbTiAlV)Nx films.
Sample | Relative intensity | Average grain size (nm) | Lattice constant (Å) | |||
---|---|---|---|---|---|---|
(111) | (200) | (220) | (311) | |||
S8 | 216 | 41 | 24 | 5 | 12.41 | 4.26015 |
S18 | 680 | 152 | 182 | 28 | 14.05 | 4.31748 |
S38 | 25 | 5 | 7 | - | 11.74 | 4.32233 |
S58 | 114 | 8 | 35 | 9 | 13.30 | 4.30363 |
Element | Cr | Nb | Ti | Al | V | N |
---|---|---|---|---|---|---|
Radius(pm) | 124.9 | 142.9 | 146.2 | 143.2 | 131.6 | 75 |
Table 3 The radius of elements in (CrNbTiAlV)Nx system.
Element | Cr | Nb | Ti | Al | V | N |
---|---|---|---|---|---|---|
Radius(pm) | 124.9 | 142.9 | 146.2 | 143.2 | 131.6 | 75 |
N2 flow | N content (at.%) | δ (%) | ΔSmix (kJ mol-1) |
---|---|---|---|
S0 | 0 | 6.41 | 13.01 |
S8 | 29.8 | 24.42 | 11.25 |
S18 | 31.4 | 24.51 | 10.52 |
S38 | 35.7 | 25.64 | 10.13 |
S58 | 40.9 | 27.04 | 9.88 |
Table 4 The nitrogen content, δ and ΔSmix value of the (CrNbTiAlV)Nx high-entropy films at different N2 flows.
N2 flow | N content (at.%) | δ (%) | ΔSmix (kJ mol-1) |
---|---|---|---|
S0 | 0 | 6.41 | 13.01 |
S8 | 29.8 | 24.42 | 11.25 |
S18 | 31.4 | 24.51 | 10.52 |
S38 | 35.7 | 25.64 | 10.13 |
S58 | 40.9 | 27.04 | 9.88 |
Fig. 5. The residual stress (a), hardness and elastic modulus (b), load-displacement curves (c) and H/E and H3/E2 (d) of (CrNbTiAlV)Nx films deposited under different nitrogen flows.
Fig. 6. The experimental curves (a: S0, b: S8, c: S18, d: S38, e: S58), adhesion LC2 (f) and scratch morphologies (g) of (CrNbTiAlV)Nx high-entropy films deposited under different nitrogen flows using a scratch tester with a diamond indenter (loading rate and termination load are 80 N/min and 100 N, respectively).
Fig. 7. The potentiodynamic polarization curves of the substrate and (CrNbTiAlV)Nx films at different N2 flows in artificial seawater at room temperature.
Sample | Ecorr (VSCE) | Epit (VSCE) | icorr (μA/cm2) | Rcorr (μm/PY) |
---|---|---|---|---|
S0 | -0.344 | 0.833 | 0.038 | 0.44 |
S8 | -0.227 | - | 0.019 | 0.23 |
S18 | -0.509 | 0.666 | 0.344 | 4.05 |
S38 | -0.091 | - | 0.015 | 0.18 |
S58 | -0.427 | 0.811 | 0.271 | 3.19 |
Substrate | -0.597 | 0.423 | 0.337 | 3.96 |
Table 5 The electrochemical parameters fitted from the polarization curve by Cview software.
Sample | Ecorr (VSCE) | Epit (VSCE) | icorr (μA/cm2) | Rcorr (μm/PY) |
---|---|---|---|---|
S0 | -0.344 | 0.833 | 0.038 | 0.44 |
S8 | -0.227 | - | 0.019 | 0.23 |
S18 | -0.509 | 0.666 | 0.344 | 4.05 |
S38 | -0.091 | - | 0.015 | 0.18 |
S58 | -0.427 | 0.811 | 0.271 | 3.19 |
Substrate | -0.597 | 0.423 | 0.337 | 3.96 |
Fig. 8. The evolution of open circuit potential and coefficient of friction in the soaking, sliding, and passivation (a, c), the wear rate and COF (b) of the substrate and (CrNbTiAlV)Nx films in artificial seawater, and the enlarged view of S58 and substrate in loading, stabilizing and unloading stages (c-1, c-2, c-3).
Fig. 9. Three-dimensional profiles, SEM, EDS of wear tracks obtained from the steel substrate (a, f, k) and S0 (b, g, l), S18 (c, h, m), S38 (d, i, n), S58 (e, j, o) films after tribocorrosion test.
Sample | Point | Cr | Nb | Ti | Al | V | N | Cl | O | Fe |
---|---|---|---|---|---|---|---|---|---|---|
Substrate | 1 | 24.9 | - | - | - | - | - | - | - | 75.1 |
2 | 23.4 | - | - | - | - | - | 0.3 | 12.7 | 63.6 | |
S0 | 3 | 8.8 | 12.1 | 8.4 | 14.9 | 3.1 | - | 1.1 | 39.9 | 11.7 |
S18 | 4 | 1.7 | - | - | - | - | - | - | 21.3 | 77.0 |
5 | 22.4 | 9.0 | 8.3 | 11.9 | 1.3 | 43.7 | 0.2 | 3.1 | - | |
S38 | 6 | 25.8 | 9.0 | 8.1 | 7.1 | 9.8 | 40.2 | - | - | - |
S58 | 7 | - | 7.1 | - | 4.7 | - | - | - | 86.5 | - |
8 | 26.6 | 9.6 | 6.9 | 9.6 | - | 47.3 | - | - | - |
Table 6 EDS results of selected points on the wear track after the tribocorrosion tests (at.%).
Sample | Point | Cr | Nb | Ti | Al | V | N | Cl | O | Fe |
---|---|---|---|---|---|---|---|---|---|---|
Substrate | 1 | 24.9 | - | - | - | - | - | - | - | 75.1 |
2 | 23.4 | - | - | - | - | - | 0.3 | 12.7 | 63.6 | |
S0 | 3 | 8.8 | 12.1 | 8.4 | 14.9 | 3.1 | - | 1.1 | 39.9 | 11.7 |
S18 | 4 | 1.7 | - | - | - | - | - | - | 21.3 | 77.0 |
5 | 22.4 | 9.0 | 8.3 | 11.9 | 1.3 | 43.7 | 0.2 | 3.1 | - | |
S38 | 6 | 25.8 | 9.0 | 8.1 | 7.1 | 9.8 | 40.2 | - | - | - |
S58 | 7 | - | 7.1 | - | 4.7 | - | - | - | 86.5 | - |
8 | 26.6 | 9.6 | 6.9 | 9.6 | - | 47.3 | - | - | - |
[1] | K. Rohith, S. Shreyas, K.B. Vishnu Appaiah, R.V. Sheshank, B.B. Ganesha, B. Vinod, Mater. Today: Proc., 18 (2019), pp. 4854-4859. |
[2] |
B.R. Hou, X.G. Li, X.M. Ma, C.W. Du, D.W. Zhang, M. Zheng, W.C. Xu, D.Z. Lu, F.B. Ma, NPJ Mater. Degrad., 1 (2017), pp. 4-13.
DOI URL |
[3] |
S. Jin, A. Atrens, Appl. Phys. A, 50 (1990), pp. 287-300.
DOI URL |
[4] |
M. Santamaria, G. Tranchida, F.D. Franco, Corros. Sci., 173 (2020), Article 108778.
DOI URL |
[5] |
X.J. Yang, C.W. Du, H.X. Wan, Z.Y. Lu, X.G. Li, Appl. Surf. Sci., 458 (2018), pp. 198-209.
DOI URL |
[6] |
J.J. Pang, D.J. Blackwood, Corros. Sci., 105 (2016), pp. 17-24.
DOI URL |
[7] |
X.D. Sui, R.N. Xu, J. Liu, S.T. Zhang, Y. Wu, J. Yang, J.Y. Hao, ACS Appl. Mater. Interfaces, 10 (2018), pp. 36531-36539.
DOI URL |
[8] |
H. Kovacı, Y.B. Bozkurt, A.F. Yetim, O. Baran, A. Çelik, Tribol. Int., 156 (2021), Article 106823.
DOI URL |
[9] |
P.A. Dearnley, B. Mallia, Wear, 306 (2013), pp. 263-275.
DOI URL |
[10] |
M.M. Liu, H.X. Hua, Y.G. Zheng, Surf. Coat. Technol., 309 (2017), pp. 579-589.
DOI URL |
[11] | X.L. Huang, L. Yua, Y.S. Dong, Prog. Org. Coat., 139 (2020), Article 105446. |
[12] |
A.S.M. Ang, C.C. Berndt, M.L. Sesso, A. Anupam, S. Praveen, R.S. Kottda, B.S. Murty, Metall. Mater. Trans. A, 46 (2015), pp. 791-800.
DOI URL |
[13] |
J.K. Xiao, H. Tan, Y.Q. Wu, Surf. Coat. Technol., 385 (2020), Article 125430.
DOI URL |
[14] |
S. Yin, W. Li, B.O. Song, X.C. Yan, M. Kuang, Y.X. Xu, K. Wen, R. Lupoi, J. Mater. Sci. Technol., 35 (2019), pp. 1003-1007.
DOI URL |
[15] |
Y.L. Li, P. Song, W.Q. Wang, M. Lei, X.W. Li, Mater. Charact., 170 (2020), Article 110674.
DOI URL |
[16] | A. Baptista, F.J.G. Silva, J. Porteiro, J.L. Míguez, G. Pinto, L. Fernandes, Proc. Manuf, 17 (2018), pp. 746-757. |
[17] |
F. Zhou, Q. Ma, Q.Z. Wang, L.K.Y. Li, J.W. Yan, Tribol. Int., 116 (2017), pp. 19-25.
DOI URL |
[18] |
Y. Wang, J.L. Li, C.Q. Dang, Y.X. Wang, Y.J. Zhu, Tribol. Int., 109 (2017), pp. 285-296.
DOI URL |
[19] |
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci., 61 (2014), pp. 1-93.
DOI URL |
[20] |
X.H. Yan, J.S. Li, W.R. Zhang, Y. Zhang, Mater. Chem. Phys., 210 (2018), pp. 12-19.
DOI URL |
[21] |
Y. Fu, J. Li, H. Luo, C.W. Du, X.G. Li, J. Mater. Sci. Technol., 80 (2021), pp. 217-233.
DOI URL |
[22] |
H. Luo, Z. Li, A.M. Mingers, D. Raabe, Corros. Sci., 134 (2018), pp. 131-139.
DOI URL |
[23] |
S. Alvi, D.M. Jarzabek, M.G. Kohan, D. Hedman, P. Jenczyk, M. Natile, A. Vomiero, F. Akhtar, ACS Appl. Mater. Interfaces, 12 (2020), pp. 21070-21079.
DOI URL |
[24] |
N.A. Khan, B. Akhavan, H.R. Zhou, L. Chang, Y. Wang, L.X. Sun, M.M. Bilek, Z.W. Liu, Appl. Surf. Sci., 495 (2019), Article 143560.
DOI URL |
[25] |
Y.S. Kim, H.J. Park, S.C. Mun, E. Jumaev, S.H. Hong, G. Song, J.T. Kim, Y.K. Park, K.S. Kim, S. Jeong, Y.H. Kwon, K.B. Kim, J. Alloys Compd., 797 (2019), pp. 834-841.
DOI URL |
[26] |
N.A. Khan, B. Akhavan, C.F. Zhou, L. Chang, Y. Wang, L.X. Sun, M.M. Bilek, Z.W. Liu, Surf. Coat. Technol., 402 (2020), Article 126327.
DOI URL |
[27] |
L.Q. Chen, W. Li, P. Liu, K. Zhang, F.C. Ma, X.H. Chen, H.L. Zhou, X.K. Liu, Vacuum, 181 (2020), Article 109706.
DOI URL |
[28] |
P.P. Cui, W. Li, P. Liu, K. Zhang, F.C. Ma, X.H. Chen, R. Feng, P.K. Liaw, J. Alloys Compd., 834 (2020), Article 155063.
DOI URL |
[29] |
A.D. Pogrebnjak, I.V. Yakushchenko, A.A. Bagdasaryan, O.V. Bondar, R. Krause-Rehberg, G. Abadias, P. Chartier, K. Oyoshi, Y. Takeda, V.M. Beresnev, O.V. Sobol, Mater. Chem. Phys., 147 (2014), pp. 1079-1091.
DOI URL |
[30] |
R. Chen, Z.B. Cai, J.B. Pu, Z.Y. Lu, S.Y. Chen, S.J. Zheng, C. Zeng, J. Alloys Compd., 827 (2020), Article 153836.
DOI URL |
[31] |
H.T. Hsueh, W.J. Shen, M.H. Tsai, J.W. Yeh, Surf. Coat. Technol., 206 (2012), pp. 4106-4112.
DOI URL |
[32] |
X.G. Feng, K.F. Zhang, Y.G. Zheng, H. Zhou, Z.H. Wan, Mater. Chem. Phys., 239 (2020), Article 121991.
DOI URL |
[33] |
B. Ren, S.Q. Yan, R.F. Zhao, Z.X. Liu, Surf. Coat. Technol., 235 (2013), pp. 764-772.
DOI URL |
[34] |
Z.C. Chang, S.C. Liang, S. Han, Y.K. Chen, F.S. Shieu, Nucl. Instrum. Methods Phys. B, 268 (2010), pp. 2504-2509.
DOI URL |
[35] |
F. Rovere, D. Music, S. Ershov, M. Baben, H.G. Fuss, P.H. Mayrhofer, J.M. Schneider, J. Phys. D: Appl. Phys., 43 (2010), Article 035302.
DOI URL |
[36] |
S.M. Wang, X.H. Yu, J.Z. Zhang, L.P. Wang, K. Leinenweber, D. He, Y.S. Zhao, Cryst. Growth Des., 16 (2016), pp. 351-358.
DOI URL |
[37] |
M. Adamik, P.B. Barna, I. Tomov, Thin Solid Films, 317 (1998), pp. 64-68.
DOI URL |
[38] |
D.C. Tsai, Z.C. Chang, B.H. Kuo, M.H. Shiao, S.Y. Chang, F.S. Shieu, Appl. Surf. Sci., 282 (2013), pp. 789-797.
DOI URL |
[39] |
C.H. Lai, S.J. Lin, J.W. Yeh, S.Y. Chang, Surf. Coat. Technol., 201 (2006), pp. 3275-3280.
DOI URL |
[40] |
D.C. Tsai, Y.L. Huang, S.R. Lin, S.C. Liang, F.S. Shieu, Appl. Surf. Sci., 257 (2010), pp. 1361-1367.
DOI URL |
[41] |
P.K. Huang, J.W. Yeh, Surf. Coat. Technol., 203 (2009), pp. 1891-1896.
DOI URL |
[42] |
Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Adv. Eng. Mater., 10 (2008), pp. 534-538.
DOI URL |
[43] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater., 6 (2004), pp. 299-303.
DOI URL |
[44] |
Y. Zhang, X.H. Yan, W.B. Liao, K. Zhang, Entropy, 20 (2018), pp. 624-635.
DOI URL |
[45] |
L. Karlsson, L. Hultman, J.E. Sundgren, Thin Solid Films, 371 (2000), pp. 167-177.
DOI URL |
[46] |
S. Suresha, R. Gunda, V. Jayaram, J. Mater. Res., 22 (2007), pp. 3501-3506.
DOI URL |
[47] |
Y. Niu, J. Wei, Z. Yu, Surf. Coat. Technol., 275 (2015), pp. 332-340.
DOI URL |
[48] |
Y.Q. Fu, F. Zhou, Q.Z. Wang, M.D. Zhang, Z.F. Zhou, L. Kwork, Y. Li, J. Alloys Compd., 791 (2019), pp. 800-813.
DOI URL |
[49] |
S.J. Zheng, Z.B. Cai, J.B. Pu, C. Zeng, S.Y. Chen, R. Chen, L.P. Wang, Appl. Surf. Sci., 483 (2019), pp. 870-874.
DOI URL |
[50] |
J. Ding, L. Zhang, M.U. Lu, J. Wang, Z.B. Wen, W.H. Hao, Appl. Surf. Sci., 289 (2014), pp. 33-41.
DOI URL |
[51] | S.J. Zheng, Z.B. Cai, J.B. Pu, C. Zeng, L.P. Wang, Appl. Surf. Sci., 483 (2021), Article 148520. |
[52] |
J. Dai, H. Feng, H.B. Li, Z.H. Jiang, H. Li, S.C. Zhang, P. Zhou, T. Zhang, Corros. Sci., 174 (2020), Article 108792.
DOI URL |
[53] |
R. Bayón, A. Igartua, J.J. González, U.R.D. Gopegui, Tribol. Int., 88 (2015), pp. 115-125.
DOI URL |
[54] |
Y.X. Wang, J.W. Zhang, S.G. Zhou, Y.C. Wang, C.T. Wang, Y.X. Wang, Y.F. Sui, J.B. Lan, Q.J. Xue, Appl. Surf. Sci., 528 (2020), Article 147061.
DOI URL |
[55] |
Y. Sun, E. Haruman, Corros. Sci., 53 (2011), pp. 4131-4140.
DOI URL |
[56] |
J.P. Celis, P. Ponthiaux, F. Wenger, Wear, 261 (2006), pp. 939-946.
DOI URL |
[57] |
Y.Q. Fu, F. Zhou, Q.Z. Wang, M.D. Zhang, Z.F. Zhou, Corros. Sci., 165 (2020), Article 108385.
DOI URL |
[58] |
A. Hatem, J.L. Lin, R.H. Wei, R.D. Torres, C. Laurindo, G.B.D. Souza, P. Soares, Surf. Coat. Technol., 347 (2018), pp. 1-12.
DOI URL |
[59] |
A. López-Ortega, R. Bayón, J.L. Arana, Surf. Coating. Technol., 349 (2018), pp. 1083-1097.
DOI URL |
[60] |
X. Dai, M. Wen, K.K. Huang, X. Wang, L.N. Yang, J. Wang, K. Zhang, Appl. Surf. Sci., 447 (2018), pp. 886-893.
DOI URL |
[1] | Zhuang-Hao Zheng, Jun-Yu Niu, Dong-Wei Ao, Bushra Jabar, Xiao-Lei Shi, Xin-Ru Li, Fu Li, Guang-Xing Liang, Yue-Xing Chen, Zhi-Gang Chen, Ping Fan. In-situ growth of high-performance (Ag, Sn) co-doped CoSb3 thermoelectric thin films [J]. J. Mater. Sci. Technol., 2021, 92(0): 178-185. |
[2] | L. Jiang, Z.Q. Chen, H.B. Lu, H.B. Ke, Y. Yuan, Y.M. Dong, X.K. Meng. Corrosion protection of NiNb metallic glass coatings for 316SS by magnetron sputtering [J]. J. Mater. Sci. Technol., 2021, 79(0): 88-98. |
[3] | Arash Afshar, Dorina Mihut. Enhancing durability of 3D printed polymer structures by metallization [J]. J. Mater. Sci. Technol., 2020, 53(0): 185-191. |
[4] | Shuan Li, Yanqing Wu, Guoling Li, Hongen Yu, Kai Fu, Yong Wu, Jie Zhang, Wenhuai Tian, Xingguo Li. Ta-doped modified Gd2O3 film for a novel high k gate dielectric [J]. J. Mater. Sci. Technol., 2019, 35(10): 2305-2311. |
[5] | Aihua Jiang, Meng Qi, Jianrong Xiao. Preparation, structure, properties, and application of copper nitride (Cu3N) thin films: A review [J]. J. Mater. Sci. Technol., 2018, 34(9): 1467-1473. |
[6] | Yueming Li, Guorui Zhao, Yuhai Qian, Jingjun Xu, Meishuan Li. Deposition of Phase-pure Cr2AlC Coating by DC Magnetron Sputtering and Post Annealing Using Cr-Al-C Targets with Controlled Elemental Composition but Different Phase Compositions [J]. J. Mater. Sci. Technol., 2018, 34(3): 466-471. |
[7] | Feng J.N.,Liu W.,Gong W.J.,Zhao X.G.,Kim D.,Choi C.J.,Zhang Z.D.. Magnetic Properties and Coercivity of MnGa Films Deposited on Different Substrates [J]. J. Mater. Sci. Technol., 2017, 33(3): 291-294. |
[8] | Ruben Kotoka, Sergey Yarmolenko, Devdas Pai, Jag Sankar. Corrosion Behavior of Reactive Sputtered Al2O3 and ZrO2 Thin Films on Mg Disk Immersed in Saline Solution [J]. J. Mater. Sci. Technol., 2015, 31(9): 873-880. |
[9] | Xiaoyan Fan, Zhenjiang Li, Alan Meng, Chun Li, Zhiguo Wu, Pengxun Yan. Improving the Thermal Stability of Cu3N Films by Addition of Mn [J]. J. Mater. Sci. Technol., 2015, 31(8): 822-827. |
[10] | Zongjian Feng, Peiling Ke, Aiying Wang. Preparation of Ti2AlC MAX Phase Coating by DC Magnetron Sputtering Deposition and Vacuum Heat Treatment [J]. J. Mater. Sci. Technol., 2015, 31(12): 1193-1197. |
[11] | Y.M. Liu, D.Y. Deng, H. Lei, Z.L. Pei, C.L. Jiang, C. Sun, J. Gong. Effect of Nitrogen Content on Microstructures and Mechanical Properties of WB2(N) Films Deposited by Reactive Magnetron Sputtering [J]. J. Mater. Sci. Technol., 2015, 31(12): 1217-1225. |
[12] | Dongli Qi, Hao Lei, Tiegang Wang, Zhiliang Pei, Jun Gong, Chao Sun. Mechanical, Microstructural and Tribological Properties of Reactive Magnetron Sputtered Cr-Mo-N Films [J]. J. Mater. Sci. Technol., 2015, 31(1): 55-64. |
[13] | Pan Jiaojiao, Wang Wenwen, Wu Dongqi, Fu Qiang, Ma Ding. Tungsten Doped Indium Oxide Thin Films Deposited at Room Temperature by Radio Frequency Magnetron Sputtering [J]. J. Mater. Sci. Technol., 2014, 30(7): 644-648. |
[14] | Xianfei Wang, Shoumei Xiong. Characterization of Microstructural and Morphological Properties in As-deposited Ta/NiFe/IrMn/CoFe/Ta Multilayer System [J]. J. Mater. Sci. Technol., 2014, 30(4): 359-364. |
[15] | I. Neelakanta Reddy, V. Rajagopal Reddy, N. Sridhara, S. Basavaraja, A.K. Sharma,Arjun Dey. Optical and Microstructural Characterisations of Pulsed rf Magnetron Sputtered Alumina Thin Film [J]. J. Mater. Sci. Technol., 2013, 29(10): 929-936. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||