J. Mater. Sci. Technol. ›› 2022, Vol. 107: 165-171.DOI: 10.1016/j.jmst.2021.06.087
• Letter • Previous Articles Next Articles
Xianghong Chen, Haiying Lu, Yu Lei, Jiakui Zhang, Feng Xiao, Rui Wang, Peiran Xie, Jiantie Xu*()
Revised:
2021-06-18
Published:
2022-04-30
Online:
2022-04-28
Contact:
Jiantie Xu
About author:
*E-mail address: jiantiexu@scut.edu.cn (J. Xu)Xianghong Chen, Haiying Lu, Yu Lei, Jiakui Zhang, Feng Xiao, Rui Wang, Peiran Xie, Jiantie Xu. Expanded graphite confined SnO2 as anode for lithium ion batteries with low average working potential and enhanced rate capability[J]. J. Mater. Sci. Technol., 2022, 107: 165-171.
Fig. 2. (a) XRD patterns and (b) Raman spectra of EG and SnO2/EG-x (x = 1, 2, 3, 4 and 8). (c) TGA curves and (d) nitrogen adsorption/desorption isotherms of EG and SnO2/EG-x (x = 1, 3 and 8). (e) XPS survey scan of SnO2/EG-3. Inset of Fig. 2d: Pore size distribution. Inset of Fig. 2e: High resolution XPS spectra of SnO2/EG-3: O 1 s, C 1 s and Sn 3d.
Fig. 3. SEM images of (a) PG, (b, c) EG and (d, e) SnO2/EG-3. (f) Elemental mapping and (g-i) TEM images of SnO2/EG-3. Inset of Fig. 3(g): corresponding SAED pattern.
Fig. 4. (a) Discharge-charge profiles of EG and SnO2/EG-x (x = 1, 2, 3, 4 and 8) hybrids at 0.05 A g-1. (b) CV curves of SnO2/EG-3 at 0.1 mV s-1 for initial 5 cycles. (c) Discharge-charge profiles of SnO2/EG-3 at various current densities. (d) Ratio of initial cycle charge capacities secured from potential ranges of 0.01-0.3 and 0.3-2.0 V. (e) Rate capability of EG and SnO2/EG- x (x = 1, 2, 3, 4 and 8) hybrids. Inset: capacity retention vs. current densities. (f) EIS spectra of SnO2/EG-3 before cycling and after 1, 10, 50, 100, 200, 300 and 500 cycles. (g) Cycling performance of EG and SnO2/EG-x (x = 1, 3 and 8).
Fig. 5. Cross-sectional SEM images of the SnO2/EG-3 electrode films (a) before cycling and (b) after 500 cycles. (c) Discharge-charge curves of SnO2/EG-3 at 0.5 A g-1 at different cycles and (d) corresponding plots of dQ/dV of charge curve. (e) Capacity contributions at different voltage ranges.
[1] |
R. Schmuch, R. Wagner, G. Hörpel, T. Placke, M. Winter, Nat. Energy, 3 (2018), pp. 267-278.
DOI URL |
[2] |
M. Li, J. Lu, Z. Chen, K. Amine, Adv. Mater., 30 (2018), Article 1800561.
DOI URL |
[3] |
Y. Deng, C. Fang, G. Chen, J. Power Sources, 304 (2016), pp. 81-101.
DOI URL |
[4] |
S. Liang, Y.J. Cheng, J. Zhu, Y. Xia, P. Müller-Buschbaum, Small Methods, 4 (2020), Article 2000218.
DOI URL |
[5] |
Y. Kong, Z. Ma, Y. Ye, G. He, Y. Sun, X. Zuo, X. Xiao, J. Nan, ACS Appl. Energy Mater., 1 (2018), pp. 7065-7075.
DOI URL |
[6] | P. Sun, J. Davis, L. Cao, Z. Jiang, J.B. Cook, H. Ning, J. Liu, S. Kim, F. Fan, R.G. Nuzzo, P.V. Braun, Energy Storage Mater., 17 (2019), pp. 151-156. |
[7] |
S.W. Gao, N. Wang, S. Li, D.M. Li, Z.M. Cui, G.C. Yue, J.C. Liu, X.X. Zhao, L. Jiang, Y. Zhao, Angew. Chem. Int. Ed., 59 (2020), pp. 2465-2472.
DOI URL |
[8] |
R. Mo, X. Tan, F. Li, R. Tao, J. Xu, D. Kong, Z. Wang, B. Xu, X. Wang, C. Wang, J. Li, Y. Peng, Y. Lu, Nat. Commun., 11 (2020), p. 1374.
DOI URL |
[9] |
C.P. Wu, K.X. Xie, J.P. He, Q.P. Wang, J.M. Ma, S. Yang, Q.H. Wang, Rare Metals, 40 (2021), pp. 48-56.
DOI URL |
[10] |
J.S. Chen, X.W. Lou, Small, 9 (2013), pp. 1877-1893.
DOI URL |
[11] |
Y. Yan, L.B. Ben, Y.J. Zhan, X.J. Huang, Electrochim. Acta, 187 (2016), pp. 186-192.
DOI URL |
[12] |
Y. Li, Y. Zhao, C. Ma, Y. Zhao, Electrochim. Acta, 218 (2016), pp. 191-198.
DOI URL |
[13] |
L. Yi, L. Liu, G. Guo, X. Chen, Y. Zhang, S. Yu, X. Wang, Electrochim. Acta, 240 (2017), pp. 63-71.
DOI URL |
[14] |
L. Ming, B. Zhang, J.f. Zhang, X.w. Wang, H. Li, C.H. Wang, J. Alloy. Compd., 752 (2018), pp. 93-98.
DOI URL |
[15] |
X. Chen, F. Xiao, Y. Lei, H. Lu, J. Zhang, M. Yan, J. Xu, J. Energy Chem., 59 (2021), pp. 292-298.
DOI URL |
[16] |
Y. Feng, C. Bai, K. Wu, H. Dong, J. Ke, X. Huang, D. Xiong, M. He, J. Alloy. Compd., 843 (2020), Article 156085.
DOI URL |
[17] |
A.C. Ferrari, J. Robertson, Phys. Rev. B, 61 (2000), pp. 14095-14107.
DOI URL |
[18] |
B.P. Thapaliya, H. Luo, P. Halstenberg, H.M. Meyer, J.R. Dunlap, S. Dai, ACS Appl. Mater. Interfaces, 13 (2021), pp. 4393-4401.
DOI URL |
[19] |
A. Diéguez, A. Romano-Rodrı́guez, A. Vilà, J.R. Morante, J. Appl. Phys., 90 (2001), pp. 1550-1557.
DOI URL |
[20] |
P. Bhattacharya, J.H. Lee, K.K. Kar, H.S. Park, Chem. Eng. J., 369 (2019), pp. 422-431.
DOI |
[21] |
D.C. Zuo, S.C. Song, C.S. An, L.B. Tang, Z.J. He, J.C. Zheng, Nano Energy, 62 (2019), pp. 401-409.
DOI URL |
[22] |
W. Yao, S. Wu, L. Zhan, Y. Wang, Chem. Eng. J., 361 (2019), pp. 329-341.
DOI URL |
[23] | J. Cui, S. Yao, J.Q. Huang, L. Qin, W.G. Chong, Z. Sadighi, J. Huang, Z. Wang, J.K. Kim, Energy Storage. Mater., 9 (2017), pp. 85-95. |
[24] |
Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii, J. Cumings, C. Wang, Nat. Commun., 5 (2014), p. 4033.
DOI URL |
[25] | W. Dong, J. Xu, C. Wang, Y. Lu, X. Liu, X. Wang, X. Yuan, Z. Wang, T. Lin, M. Sui, I.W. Chen, F. Huang, Adv. Mater., 29 (2017), Article 1700136. |
[26] |
G. Zhou, D.W. Wang, L. Li, N. Li, F. Li, H.M. Cheng, Nanoscale, 5 (2013), pp. 1576-1582.
DOI URL |
[27] |
W. Xie, Q. Wang, J. Xu, Y. Yu, R. Zhao, N. Li, M. Li, Y. Du, S. Peng, G. Cao, J. Mater. Chem. A, 7 (2019), pp. 10523-10533.
DOI URL |
[28] |
X. Ye, Z. Lin, S. Liang, X. Huang, X. Qiu, Y. Qiu, X. Liu, D. Xie, H. Deng, X. Xiong, Z. Lin, Nano Lett., 19 (2019), pp. 1860-1866.
DOI URL |
[29] |
F. Xiao, X. Chen, J. Zhang, C. Huang, T. Hu, B. Hong, J. Xu, J. Energy Chem., 48 (2020), pp. 122-127.
DOI URL |
[30] |
K. Liu, S. Zhu, X. Dong, H. Huang, M. Qi, Adv. Mater. Interfaces, 7 (2020), Article 1901916.
DOI URL |
[31] | X. Liu, J. Guo, T. Liu, J. Zhang, Z. Jia, C. Zhang, Energy Stor. Mater., 35 (2021), pp. 520-529. |
[32] |
Y.J. Choi, Y.H. Kim, H.K. Kim, K.B. Kim, Chem. Eng. J., 417 (2021), Article 128542.
DOI URL |
[1] | Bin Sun, Zili Zhang, Jing Xu, Yanpeng Lv, Yang Jin. Composite separator based on PI film for advanced lithium metal batteries [J]. J. Mater. Sci. Technol., 2022, 102(0): 264-271. |
[2] | Yongqiang Ren, Xiuyan Li, Yinan Wang, Qinghua Gong, Shaonan Gu, Tingting Gao, Xuefeng Sun, Guowei Zhou. Self-template formation of porous yolk-shell structure Mo-doped NiCo2O4 toward enhanced lithium storage performance as anode material [J]. J. Mater. Sci. Technol., 2022, 102(0): 186-194. |
[3] | Jinghao Li, Kehan Le, Wei Wei. Enabling a stable and dendrite-suppressed Zn anode via facile surface roughness engineering [J]. J. Mater. Sci. Technol., 2022, 102(0): 272-277. |
[4] | Chengcheng Huang, Yiwen Liu, Runtian Zheng, Zhengwei Yang, Zhonghao Miao, Junwei Zhang, Xinhao Cai, Haoxiang Yu, Liyuan Zhang, Jie Shu. Interlayer gap widened TiS2 for highly efficient sodium-ion storage [J]. J. Mater. Sci. Technol., 2022, 107(0): 64-69. |
[5] | Wei Wei, Shujiang Geng, Fuhui Wang. Evaluation of Ni-Fe base alloys as inert anode for low-temperature aluminium electrolysis [J]. J. Mater. Sci. Technol., 2022, 107(0): 216-226. |
[6] | Fuxi Peng, Mingfeng Dai, Zhenyu Wang, Yifan Guo, Zuowan Zhou. Progress in graphene-based magnetic hybrids towards highly efficiency for microwave absorption [J]. J. Mater. Sci. Technol., 2022, 106(0): 147-161. |
[7] | Yun Tian, Zhengyu Wei, Fan Li, Songjie Li, Lixiang Shao, Mengyuan He, Panfei Sun, Yuanyuan Li. Enhanced multiple anchoring and catalytic conversion of polysulfides by SnO2-decorated MoS2 hollow microspheres for high-performance lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2022, 100(0): 216-223. |
[8] | Jingqi Chen, Xianlei Hu, Haitao Gao, Shu Yan, Shoudong Chen, Xianghua Liu. Graphene-wrapped MnCO3/Mn3O4 nanocomposite as an advanced anode material for lithium-ion batteries: Synergistic effect and electrochemical performances [J]. J. Mater. Sci. Technol., 2022, 99(0): 9-17. |
[9] | Xinlu Zhang, Lu Han, Junfeng Li, Ting Lu, Jinliang Li, Guang Zhu, Likun Pan. A novel Sn-based coordination polymer with high-efficiency and ultrafast lithium storage [J]. J. Mater. Sci. Technol., 2022, 97(0): 156-164. |
[10] | Jiajia Ye, Xuting Li, Guang Xia, Guanghao Gong, Zhiqiang Zheng, Chuanzhong Chen, Cheng Hu. P-doped CoSe2 nanoparticles embedded in 3D honeycomb-like carbon network for long cycle-life Na-ion batteries [J]. J. Mater. Sci. Technol., 2021, 77(0): 100-107. |
[11] | Zhou Zhou, Chaoying Ding, Wenchao Peng, Yang Li, Fengbao Zhang, Xiaobin Fan. One-step fabrication of two-dimensional hierarchical Mn2O3@graphene composite as high-performance anode materials for lithium ion batteries [J]. J. Mater. Sci. Technol., 2021, 80(0): 13-19. |
[12] | Jian Han, Xiaonan Tang, Shaofan Ge, Ying Shi, Chengzhi Zhang, Feng Li, Shuo Bai. Si/C particles on graphene sheet as stable anode for lithium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 80(0): 259-265. |
[13] | Huipeng Lv, Chen Wu, Faxiang Qin, Huaxin Peng, Mi Yan. Extra-wide bandwidth via complementary exchange resonance and dielectric polarization of sandwiched FeNi@SnO2 nanosheets for electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2021, 90(0): 1-8. |
[14] | Lishuang Fan, Yu Zhang, Hao Zhou, Zhikun Guo, Yujie Feng, Naiqing Zhang. Kinetically enhanced electrochemical redox reactions by chemical bridging SnO2 and graphene sponges toward high-rate and long-cycle lithium ion battery [J]. J. Mater. Sci. Technol., 2021, 88(0): 250-257. |
[15] | Jin-Sung Park, Gi Dae Park, Yun Chan Kang. Exploration of cobalt selenite-carbon composite porous nanofibers as anode for sodium-ion batteries and unveiling their conversion reaction mechanism [J]. J. Mater. Sci. Technol., 2021, 89(0): 24-35. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||