J. Mater. Sci. Technol. ›› 2021, Vol. 88: 250-257.DOI: 10.1016/j.jmst.2020.11.082
Previous Articles Next Articles
Lishuang Fana,b, Yu Zhangc,*(), Hao Zhoua, Zhikun Guoa, Yujie Fenga, Naiqing Zhanga,b,**(
)
Received:
2020-10-14
Revised:
2020-11-06
Accepted:
2020-11-23
Published:
2021-03-18
Online:
2021-03-18
Contact:
Yu Zhang,Naiqing Zhang
About author:
**State Key Laboratory of Urban Water Resource andEnvironment, Harbin Institute of Technology, China.E-mail addresses: znqmww@163.com(N. Zhang).Lishuang Fan, Yu Zhang, Hao Zhou, Zhikun Guo, Yujie Feng, Naiqing Zhang. Kinetically enhanced electrochemical redox reactions by chemical bridging SnO2 and graphene sponges toward high-rate and long-cycle lithium ion battery[J]. J. Mater. Sci. Technol., 2021, 88: 250-257.
Scheme 1. (a) Schematic diagram of the construction of 3D SnO2@GS and interaction between SnO2 and graphene; (b) Schematic illustration of the advantage with 3D conductive graphene for SnO2.
Fig. 1. (a) X-ray diffraction patterns for SnO2@GS. (b) SEM image of the SnO2@GS. (c, d) TEM and HRTEM image of SnO2@GS (inset: the SAED image), (e, f) elemental mapping image. The orange rectangle selected region in (e) corresponds to the EDS results in (f).
Fig. 3. (a) CV curve of SnO2@GS nanocomposites in the potential window 0.01-3 V with a scanning rate 0.1 mV s-1. (b) CV curves of the SnO2@GS at a different scan rate. (c) Power law dependence of current on scan rate shows good linearity. (d) The rate performance of the SnO2@GS and SnO2 (1 C = 1200 mAh g-1). (e) Cycling performance curves of the SnO2@GS at 5 C.
Fig. 4. (a) C 1s, (b) O 1s, and (c) Sn 3d XPS supectrum of the SnO2@GS after 625 cycle at 5 C, before cycle (uncycled SnO2@GS) and SnO2 powder. (d) Nyquist plots of the SnO2@GS and SnO2+GS.
[1] |
M. Armand, J.M. Tarascon, Nature 451 (2008) 652-657.
DOI URL |
[2] |
B. Key, M. Morcrette, J.M. Tarascon, C.P. Grey, J. Am. Chem. Soc. 133 (2011) 503-512.
DOI URL |
[3] |
H. Li, Z. Wang, L. Chen, X. Huang, Adv. Mater. 21 (2009) 4593-4607.
DOI URL |
[4] | C. Miao, M. Liu, Y.-B. He, X. Qin, L. Tang, B. Huang, R. Li, B. Li, F. Kang, Energy Storage Mater. 3 (2016) 98-105. |
[5] |
M.S. Park, Y.M. Kang, J.H. Kim, G.X. Wang, S.X. Dou, H.K. Liu, Carbon 46 (2008) 35-40.
DOI URL |
[6] |
X.L. Wang, W.Q. Han, H.Y. Chen, J.M. Bai, T.A. Tyson, X.Q. Yu, X.J. Wang, X.Q. Yang, J. Am. Chem. Soc. 133 (2011) 20692-20695.
DOI URL |
[7] |
Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, Science 276 (1997), 1395-0397.
DOI URL |
[8] |
S.M. Paek, E. Yoo, I. Honma, Nano Lett. 9 (2009) 72-75.
DOI URL |
[9] |
X. Liu, D. Chao, Y. Li, J. Hao, X. Liu, J. Zhao, J. Lin, H.J. Fan, Z.X. Shen, Nano Energy 17 (2015) 43-51.
DOI URL |
[10] |
C. Wang, Y. Zhou, M. Ge, X. Cu, Z. Zhang, J.Z. Jiang, J. Am. Chem. Soc. 132 (2010) 46-47.
DOI PMID |
[11] |
J. Huang, L. Zhong, C. Wang, J.P. Sullivan, W. Xu, L. Zhang, S. Mao, N.S. Hudak, X. Liu, A. Subramanian, H. Fan, L. Qi, A. Kushima, J. Li, Science 330 (2010) 1515-1520.
DOI PMID |
[12] |
X.W. Lou, Y. Wang, C.L. Yuan, J.Y. Lee, L.A. Archer, Adv. Mater. 18 (2006) 2325-2329.
DOI URL |
[13] |
P.G. Bruce, B. Scrosati, J.M. Tarascon, Angew. Chem. Int. Ed. 47 (2008) 2930-2946.
DOI URL |
[14] |
D.J. Xue, S. Xin, Y. Yan, K.C. Jiang, Y.X. Yin, Y.G. Guo, L.J. Wan, J. Am. Chem. Soc. 134 (2012) 2512-2515.
DOI URL |
[15] |
Y. Wang, H.C. Zeng, J.Y. Lee, Adv. Mater. 18 (2006) 645-649.
DOI URL |
[16] |
X. Wang, X. Cao, L. Bourgeois, H. Guan, S. Chen, Y. Zhong, D.M. Tang, H. Li, T. Zhai, L. Li, Y. Bando, D. Golberg, Adv. Funct. Mater. 22 (2012) 2682-2690.
DOI URL |
[17] |
J. Yao, X. Shen, B. Wang, H. Liu, G. Wang, Electrochem. Commun. 11 (2009) 1849-1852.
DOI URL |
[18] |
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306 (2004) 666-669.
PMID |
[19] |
C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321 (2008) 385-388.
DOI URL |
[20] |
H. Lv, Y. Guo, Z. Yang, Y. Cheng, L.P. Wang, B. Zhang, Y. Zhao, Z.J. Xu, G. Ji, J. Mater. Chem. C 5 (2017) 491-512.
DOI URL |
[21] |
S.J.R. Prabakar, Y.-H. Hwang, E.-G. Bae, S. Shim, D. Kim, M.S. Lah, K.S. Sohn, M. Pyo, Adv. Mater. 25 (2013) 3307-3312.
DOI URL |
[22] |
S. Yang, W. Yue, J. Zhu, Y. Ren, X. Yang, Adv. Funct. Mater. 23 (2013) 3570-3576.
DOI URL |
[23] |
L. Wang, D. Wang, Z. Dong, F. Zhang, J. Jin, Nano Lett. 13 (2013) 1711-1716.
DOI PMID |
[24] | D.I. Son, B.W. Kwon, D.H. Park, W.S. Seo, Y. Yi, B. Angadi, C.L. Lee, W.K. Choi, Nano Res. 11 (2012) 747-761. |
[25] |
K.M. Li, Y.J. Li, M.Y. Lu, C.I. Ku, L.J. Chen, Adv. Funct. Mater. 19 (2009) 2453-2456.
DOI URL |
[26] |
G.M. Zhou, D.W. Wang, L.C. Yin, N. Li, H.M. Cheng, ACS Nano 6 (2012) 3214-3223.
DOI URL |
[27] |
Y.H. Dou, J.T. Xu, B.Y. Ruan, Q.N. Liu, Y.D. Pan, Z.Y. Sun, S.X. Dou, Adv. Energy Mater. 6 (2016), 1501835.
DOI URL |
[28] |
L. Fan, Y. Zhang, Q. Zhang, X. Wu, J. Cheng, N. Zhang, Y. Feng, K. Sun, Small 12 (2016) 5208-5216.
DOI URL |
[29] |
S. Bansal, D.K. Pandya, S.C. Kashyap, Appl. Phys. Lett. 104 (2014), 082108.
DOI URL |
[30] |
L. Liu, M. An, P. Yang, J. Zhang, Sci. Rep. 5 (2015) 9055.
DOI URL |
[31] |
K.T. Lee, Y.S. Jung, S.M. Oh, J. Am. Chem. Soc. 125 (2003) 5652-5653.
DOI URL |
[32] |
M.S. Park, G.X. Wang, Y.M. Kang, D. Wexler, S.X. Dou, H.K. Liu, Angew. Chem. Int. Ed. 46 (2007) 764-767.
DOI URL |
[33] |
X.S. Zhou, L.J. Wan, Y.G. Guo, Adv. Mater. 25 (2013) 2152-2157.
DOI URL |
[34] |
B. Wang, D.W. Su, J. Park, H. Ahn, G.X. Wang, Nanoscale Res. Lett. 7 (2012) 215.
DOI PMID |
[35] |
V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna, S.H. Tolbert, H.D. Abruña, P. Simon, B. Dunn, Nat. Mater. 12 (2013) 518-522.
DOI URL |
[36] |
Z. Li, G. Wu, S. Deng, S. Wang, Y. Wang, J. Zhou, S. Liu, W. Wu, M. Wu, Chem. Eng. J. 283 (2016) 1435-1442.
DOI URL |
[37] |
D.N. Wang, J.L. Yang, X.F. Li, D.S. Geng, R.Y. Li, M. Cai, T.K. Sham, X.L. Sun, Energy Environ. Sci. 6 (2013) 2900-2906.
DOI URL |
[38] |
H. Luo, D. Ji, Z. Yang, Y. Huang, G. Xiong, Y. Zhu, R. Guo, Y. Wan, Chem. Eng. J. 326 (2017) 151-161.
DOI URL |
[39] |
X. Liu, D. Chao, D. Su, S. Liu, L. Chen, C. Chi, J. Lin, Z.X. Shen, J. Zhao, L. Mai, Y. Li, Nano Energy 37 (2017) 108-117.
DOI URL |
[40] |
Y. Zhong, M. Yang, X. Zhou, Z. Zhou, Mater. Horiz. 2 (2015) 553-566.
DOI URL |
[41] | R. Hu, Y. Ouyang, T. Liang, H. Wang, J. Liu, J. Chen, C. Yang, L. Yang, M. Zhu, Adv.Mater. 29 (2017), 1605006. |
[1] | Zhou Zhou, Chaoying Ding, Wenchao Peng, Yang Li, Fengbao Zhang, Xiaobin Fan. One-step fabrication of two-dimensional hierarchical Mn2O3@graphene composite as high-performance anode materials for lithium ion batteries [J]. J. Mater. Sci. Technol., 2021, 80(0): 13-19. |
[2] | Guoquan Suo, Dan Li, Lei Feng, Xiaojiang Hou, Xiaohui Ye, Li Zhang, Qiyao Yu, Yanling Yang, Wei (Alex) Wang. Construction of SnS2/SnO2 heterostructures with enhanced potassium storage performance [J]. J. Mater. Sci. Technol., 2020, 55(0): 167-172. |
[3] | Angga Hermawan, Yusuke Asakura, Miki Inada, Shu Yin. A facile method for preparation of uniformly decorated-spherical SnO2 by CuO nanoparticles for highly responsive toluene detection at high temperature [J]. J. Mater. Sci. Technol., 2020, 51(0): 119-129. |
[4] | Lei Hu, Fuxin Wang, M.-Sadeeq Balogun, Yexiang Tong. Hollow Co2P/Co-carbon-based hybrids for lithium storage with improved pseudocapacitance and water oxidation anodes [J]. J. Mater. Sci. Technol., 2020, 55(0): 203-211. |
[5] | Kyungeun Jung, Du Hyeon Kim, Jaemin Kim, Sunglim Ko, Jae Won Choi, Ki Chul Kim, Sang-Geul Lee, Man-Jong Lee. Influence of a UV-ozone treatment on amorphous SnO2 electron selective layers for highly efficient planar MAPbI3 perovskite solar cells [J]. J. Mater. Sci. Technol., 2020, 59(0): 195-202. |
[6] | Youzuo Hu, Hongyuan Zhao, Ming Tan, Jintao Liu, Xiaohui Shu, Meiling Zhang, Shanshan Liu, Qiwen Ran, Hao Li, Xingquan Liu. Synthesis of α-LiFeO2/Graphene nanocomposite via layer by layer self-assembly strategy for lithium-ion batteries with excellent electrochemical performance [J]. J. Mater. Sci. Technol., 2020, 55(0): 173-181. |
[7] | Min Su Park, Jin Kyu Kim, Tong-Seok Han, Jung Tae Park, Jong Hak Kim. Impregnation approach for poly(vinylidene fluoride)/tin oxide nanotube composites with high tribological performance [J]. J. Mater. Sci. Technol., 2020, 37(0): 19-25. |
[8] | Wang Zhongren, Gao Quanbin, Lv Peng, Li Xiuwan, Wang Xinghui, Qu Baihua. Facile fabrication of core-shell Ni3Se2/Ni nanofoams composites for lithium ion battery anodes [J]. J. Mater. Sci. Technol., 2020, 38(0): 119-124. |
[9] | Yongqiang Liu, Xin Wang, Jiyu Cai, Xiaoxiao Han, Dongsheng Geng, Jianlin Li, Xiangbo Meng. Atomic-scale tuned interface of nickel-rich cathode for enhanced electrochemical performance in lithium-ion batteries [J]. J. Mater. Sci. Technol., 2020, 54(0): 77-86. |
[10] | InSu Jin, Minwoo Park, Jae Woong Jung. Reduced interface energy loss in non-fullerene organic solar cells using room temperature-synthesized SnO2 quantum dots [J]. J. Mater. Sci. Technol., 2020, 52(0): 12-19. |
[11] | Zhaoruxin Guan, Xiaoxue Wang, Tingting Li, Qizhen Zhu, Mengqiu Jia, Bin Xu. Facile synthesis of rutile TiO2/carbon nanosheet composite from MAX phase for lithium storage [J]. J. Mater. Sci. Technol., 2019, 35(9): 1977-1981. |
[12] | Ruiwu Li, Yanwen Zhou, Maolin Sun, Zhen Gong, Yuanyuan Guo, Xitao Yin, Fayu Wu, Wutong Ding. Gas sensing selectivity of oxygen-regulated SnO2 films with different microstructure and texture [J]. J. Mater. Sci. Technol., 2019, 35(10): 2232-2237. |
[13] | Zhong Haoxiang, Lu Jidian, He Aiqin, Sun Minghao, He Jiarong, Zhang Lingzhi. Carboxymethyl chitosan/poly(ethylene oxide) water soluble binder: Challenging application for 5 V LiNi0.5Mn1.5O4 cathode [J]. J. Mater. Sci. Technol., 2017, 33(8): 763-767. |
[14] | Jin Yan, Zhao Chongchong, Lin Yichao, Wang Deyu, Chen Liang, Shen Cai. Fe-Based Metal-Organic Framework and Its Derivatives for Reversible Lithium Storage [J]. J. Mater. Sci. Technol., 2017, 33(8): 768-774. |
[15] | Lim Seh-Yoon, Chae Sudong, Jung Su-Ho, Hyeon Yuhwan, Jang Wonseok, Yoon Won-Sub, Choi Jae-Young, Whang Dongmok. Loose-fit graphitic encapsulation of silicon nanowire for one-dimensional Si anode design [J]. J. Mater. Sci. Technol., 2017, 33(10): 1120-1127. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||