J. Mater. Sci. Technol. ›› 2017, Vol. 33 ›› Issue (10): 1120-1127.DOI: 10.1016/j.jmst.2017.07.003
• Orginal Article • Previous Articles Next Articles
Lim Seh-Yoona, Chae Sudonga, Jung Su-Hoa, Hyeon Yuhwana, Jang Wonseoka, Yoon Won-Subb, Choi Jae-Younga(), Whang Dongmoka(
)
Received:
2017-01-09
Accepted:
2017-05-18
Online:
2017-10-25
Published:
2018-01-25
About author:
1 These two authors contributed equally to this paper.
Lim Seh-Yoon, Chae Sudong, Jung Su-Ho, Hyeon Yuhwan, Jang Wonseok, Yoon Won-Sub, Choi Jae-Young, Whang Dongmok. Loose-fit graphitic encapsulation of silicon nanowire for one-dimensional Si anode design[J]. J. Mater. Sci. Technol., 2017, 33(10): 1120-1127.
Fig. 2. Schematic of the fabrication process for preparing SiNW@V@GS; Silicon nanowires were first preapred by a CVD process. The Si nanowires were coated after the oxidation process. By heat-treating the sample in methane gas, graphene-like carbon sheath was formed on the surface of SiO2 layer. The inner SiO2 templates were then selectively removed by HF etching, leaving carbon sheath encapsulated silicon nanowire with a void between them.
Fig. 3. SEM images of (a) SiNW@GS and (b) SiNW@V@GS-2h. (c) TEM images of SiNW@V@GS and inset shows electron diffraction pattern of SiNWs observed through [1-10] zone axis. (d) High-magnification TEM image of graphitic carbon sheath in SiNW@V@GS. During fabrication of SiNW@V@GS, the sacrificial SiO2 layer was grown for 2 h during the oxidation process.
Fig. 5. (a) Cycling performance and (b) Coulombic efficiency of SiNW@V@GS anode samples at 0.5C. (c) Initial discharge-charge profile between 0.001 V-1.5 V and (d) rate performance of SiNW@V@GS-2h at various rates from 0.1C to 2C.
Fig. 6. Cyclic voltammograms (CV) from the first 8 cycles for (a) SiNW and (b) SiNW@V@GS-2h from 0.001 V to 1.5 V at a scan rate of 0.1 mV s-1. (c) Electrochemical impedance spectra (EIS) of the SiNW@GS, SiNW@V@GS-1h, and SiNW@V@GS-2h sample after the 30th cycles. (d) Cycling performance and Coulombic efficiency of SiNW@V@GS-2h at a current rate of 1C during 150 cycles.
Fig. 7. SEM images of (a and c) SiNW@V@GS-1h and (b and d) SiNW@V@GS-2h electrode (a and b) before cycling and (c and d) after 30 cycling, respectively. Inset in (d) is the HRTEM image of SiNW@V@GS-2h after 30 cycling; the scale bars are 200 nm.
Sample | Discharge capacity (mAh g-1)/Cycle numbers | Cycle retention | Potential range (V) | Rate/current density (mA g-1) |
---|---|---|---|---|
Si@C nanofibers[38] | 590 mAh g-1/100 cycles | 92% | 0.01-1.5 V | 50 mA-1 |
G/Si composite[40] | 800 mAh g-1/30 cycles | 83% | 0-1.2 V | 300 mA-1 |
Hollow core-shell Si-C[41] | 650 mAh g-1/100cycles | 86% | 0.05-1.5 V | 1 Ag-1 |
Si@SiO2@C composite[42] | 800 mAh g-1/30 cycles | 96% | 0-1.5 V | 50 mA-1 |
Si@C hollow hetero[43] | 625 mAh g-1/40 cycles | 76% | 0.02-1.2 V | 50 mA-1 |
Si@N-CNT[44] | 838.2 mAh g-1/50 cycles | 74% | 0.01-1.2 V | 0.2C |
Si Pomegranate[45] | 1160 mAh g-1/1000 cycles | 97% | 0.01-1V | 0.5C |
Si/GNs hybrid[46] | 942 mAh g-1/100 cycles | 88% | 0.01-1.5 V | 0.2 Ag-1 |
SiC@Si core-shell NW[47] | 1809 mAh g-1/50 cycles | 38% | 0.01-2 V | 0.5C |
HC-Nano Si/G[48] | 864 mAh g-1/150 cycles | 84% | 0.005-1.5 V | 0.2C |
Si-rGo-C composite[49] | 840 mAh g-1/300 cycles | 79% | 0.005-1.5 V | 1C |
Si core-SiOx shell NPs[50] | 1274 mAh g-1/50 cycles | 94% | 0.01-2.0 V | 210 mA-1 |
Si/CNFs@rGO[51] | 1055 mA g-1/130 cycles | 29% | 0.01-3.0 V | 100 mA-1 |
Si@C/RGO composite[52] | 1800 mAh g-1/100 cycles | - | 0.01-1.0 V | 0.2C |
Our sample (for 2 h) | 1444 mAh g-1/150 cycles | 85% | 0.001-1.5 V | 1C |
Table 1 Comparison of electrochemical properties of Silicon anodes with different structures.
Sample | Discharge capacity (mAh g-1)/Cycle numbers | Cycle retention | Potential range (V) | Rate/current density (mA g-1) |
---|---|---|---|---|
Si@C nanofibers[38] | 590 mAh g-1/100 cycles | 92% | 0.01-1.5 V | 50 mA-1 |
G/Si composite[40] | 800 mAh g-1/30 cycles | 83% | 0-1.2 V | 300 mA-1 |
Hollow core-shell Si-C[41] | 650 mAh g-1/100cycles | 86% | 0.05-1.5 V | 1 Ag-1 |
Si@SiO2@C composite[42] | 800 mAh g-1/30 cycles | 96% | 0-1.5 V | 50 mA-1 |
Si@C hollow hetero[43] | 625 mAh g-1/40 cycles | 76% | 0.02-1.2 V | 50 mA-1 |
Si@N-CNT[44] | 838.2 mAh g-1/50 cycles | 74% | 0.01-1.2 V | 0.2C |
Si Pomegranate[45] | 1160 mAh g-1/1000 cycles | 97% | 0.01-1V | 0.5C |
Si/GNs hybrid[46] | 942 mAh g-1/100 cycles | 88% | 0.01-1.5 V | 0.2 Ag-1 |
SiC@Si core-shell NW[47] | 1809 mAh g-1/50 cycles | 38% | 0.01-2 V | 0.5C |
HC-Nano Si/G[48] | 864 mAh g-1/150 cycles | 84% | 0.005-1.5 V | 0.2C |
Si-rGo-C composite[49] | 840 mAh g-1/300 cycles | 79% | 0.005-1.5 V | 1C |
Si core-SiOx shell NPs[50] | 1274 mAh g-1/50 cycles | 94% | 0.01-2.0 V | 210 mA-1 |
Si/CNFs@rGO[51] | 1055 mA g-1/130 cycles | 29% | 0.01-3.0 V | 100 mA-1 |
Si@C/RGO composite[52] | 1800 mAh g-1/100 cycles | - | 0.01-1.0 V | 0.2C |
Our sample (for 2 h) | 1444 mAh g-1/150 cycles | 85% | 0.001-1.5 V | 1C |
|
[1] | Seung Woo Lee, Bongho Lee, Chaekyung Baik, Tae-Yang Kim, Chanho Pak. Multifunctional Ir-Ru alloy catalysts for reversal-tolerant anodes of polymer electrolyte membrane fuel cells [J]. J. Mater. Sci. Technol., 2021, 60(0): 105-112. |
[2] | Weiwei Xiao, Na Ni, Xiaohui Fan, Xiaofeng Zhao, Yingzheng Liu, Ping Xiao. Ambient flash sintering of reduced graphene oxide/zirconia composites: Role of reduced graphene oxide [J]. J. Mater. Sci. Technol., 2021, 60(0): 70-76. |
[3] | Myung-Sic Chae, Tae Ho Lee, Kyung Rock Son, Tae Hoon Park, Kyo Seon Hwang, Tae Geun Kim. Electrochemically metal-doped reduced graphene oxide films: Properties and applications [J]. J. Mater. Sci. Technol., 2020, 40(0): 72-80. |
[4] | Yiwen Hong, Jingli Xu, Jin Suk Chung, Won Mook Choi. Graphene quantum dots/Ni(OH)2 nanocomposites on carbon cloth as a binder-free electrode for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 58(0): 73-79. |
[5] | Kritesh Kumar Gupta, Tanmoy Mukhopadhyay, Aditya Roy, Sudip Dey. Probing the compound effect of spatially varying intrinsic defects and doping on mechanical properties of hybrid graphene monolayers [J]. J. Mater. Sci. Technol., 2020, 50(0): 44-58. |
[6] | Lu Shen, Yong Li, Wenjie Zhao, Kui Wang, Xiaojing Ci, Yangmin Wu, Gang Liu, Chao Liu, Zhiwen Fang. Tuning F-doped degree of rGO: Restraining corrosion-promotion activity of EP/rGO nanocomposite coating [J]. J. Mater. Sci. Technol., 2020, 44(0): 121-132. |
[7] | Tao Liu, Caizhen Zhu, Wei Wu, Kai-Ning Liao, Xianjing Gong, Qijun Sun, Robert K.Y. Li. Facilely prepared layer-by-layer graphene membrane-based pressure sensor with high sensitivity and stability for smart wearable devices [J]. J. Mater. Sci. Technol., 2020, 45(0): 241-247. |
[8] | Tielong Han, Enzuo Liu, Jiajun Li, Naiqin Zhao, Chunnian He. A bottom-up strategy toward metal nano-particles modified graphene nanoplates for fabricating aluminum matrix composites and interface study [J]. J. Mater. Sci. Technol., 2020, 46(0): 21-32. |
[9] | Hao Yu, Yi He, Guoqing Xiao, Yi Fan, Jing Ma, Yixuan Gao, Ruitong Hou, Jingyu Chen. Weak-reduction graphene oxide membrane for improving water purification performance [J]. J. Mater. Sci. Technol., 2020, 39(0): 106-112. |
[10] | Guoquan Suo, Dan Li, Lei Feng, Xiaojiang Hou, Xiaohui Ye, Li Zhang, Qiyao Yu, Yanling Yang, Wei (Alex) Wang. Construction of SnS2/SnO2 heterostructures with enhanced potassium storage performance [J]. J. Mater. Sci. Technol., 2020, 55(0): 167-172. |
[11] | Liang Chen, Zhi Li, Gangyong Li, Minjie Zhou, Binhong He, Jie Ouyang, Wenyuan Xu, Wei Wang, Zhaohui Hou. A facile self-catalyzed CVD method to synthesize Fe3C/N-doped carbon nanofibers as lithium storage anode with improved rate capability and cyclability [J]. J. Mater. Sci. Technol., 2020, 44(0): 229-236. |
[12] | Youzuo Hu, Hongyuan Zhao, Ming Tan, Jintao Liu, Xiaohui Shu, Meiling Zhang, Shanshan Liu, Qiwen Ran, Hao Li, Xingquan Liu. Synthesis of α-LiFeO2/Graphene nanocomposite via layer by layer self-assembly strategy for lithium-ion batteries with excellent electrochemical performance [J]. J. Mater. Sci. Technol., 2020, 55(0): 173-181. |
[13] | Tingmin Di, Liuyang Zhang, Bei Cheng, Jiaguo Yu, Jiajie Fan. CdS nanosheets decorated with Ni@graphene core-shell cocatalyst for superior photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2020, 56(0): 170-178. |
[14] | Xin Wu, Fengwen Mu, Haiyan Zhao. Recent progress in the synthesis of graphene/CNT composites and the energy-related applications [J]. J. Mater. Sci. Technol., 2020, 55(0): 16-34. |
[15] | Iftikhar Ahmad, Mohammad Islam, Nuha Al Habis, Shahid Parvez. Hot-pressed graphene nanoplatelets or/and zirconia reinforced hybrid alumina nanocomposites with improved toughness and mechanical characteristics [J]. J. Mater. Sci. Technol., 2020, 40(0): 135-145. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||