J. Mater. Sci. Technol. ›› 2022, Vol. 129: 240-250.DOI: 10.1016/j.jmst.2022.05.007
• Research Article • Previous Articles Next Articles
Wei Songa,b,1, Hai Wanga,1, Yi Lia,b, Shuyuan Zhanga, Ling Rena,*(), Ke Yanga
Received:
2022-02-21
Revised:
2022-04-27
Accepted:
2022-05-01
Published:
2022-12-01
Online:
2022-05-30
Contact:
Ling Ren
About author:
* E-mail addresses: lren@imr.ac.cn (L. Ren).1 Wei Song and Hai Wang contribute equally to this work.
Wei Song, Hai Wang, Yi Li, Shuyuan Zhang, Ling Ren, Ke Yang. Ultrafine grained metastable Ti6Al4V5Cu alloy with high strength and excellent low-cycle fatigue property[J]. J. Mater. Sci. Technol., 2022, 129: 240-250.
Element (wt%) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Al | V | Cu | Fe | C | N | H | O | Ti | |
Ti6Al4V5Cu | 5.75 | 3.78 | 5.36 | 0.10 | 0.011 | 0.002 | 0.002 | 0.06 | Bal. |
Ti6Al4V | 6.03 | 3.96 | - | 0.05 | 0.040 | 0.010 | 0.005 | 0.11 | Bal. |
Table 1. Chemical compositions of the experimental alloys.
Element (wt%) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Al | V | Cu | Fe | C | N | H | O | Ti | |
Ti6Al4V5Cu | 5.75 | 3.78 | 5.36 | 0.10 | 0.011 | 0.002 | 0.002 | 0.06 | Bal. |
Ti6Al4V | 6.03 | 3.96 | - | 0.05 | 0.040 | 0.010 | 0.005 | 0.11 | Bal. |
Fig. 1. Initial microstructures of the Ti6Al4V5Cu and the Ti6Al4V alloys. (a, b) Phase distribution figures; (c, d) IPFs of the α phase; (e, f) IPFs of the β phase.
Fig. 3. Tensile properties of the Ti6Al4V5Cu alloy and the Ti6Al4V alloy. (a) Engineering stress-strain curve; (b) comparison of tensile properties of the Ti6Al4V5Cu alloy with other titanium alloys; (c) work hardening rate-true strain curve; (d) true stress-true strain curve in cyclic tensile and uniaxial tensile tests of the Ti6Al4V5Cu alloy.
Fig. 4. Low-cycle fatigue properties of the Ti6Al4V5Cu and the Ti6Al4V alloys. (a) Strain amplitude-cycle number curve; (b) hysteresis loop at the strain amplitude of Δεt/2 = 1.6%; (c, d) stress amplitude-cycle number curves of the Ti6Al4V5Cu alloy and the Ti6Al4V alloys under different strain amplitudes, respectively; (e, f) Hysteresis loops of the Ti6Al4V5Cu and the Ti6Al4V alloys at half-life cycles under different strain amplitude, respectively.
Ti6Al4V5Cu | Ti6Al4V | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Δεt/2 (%) | Life (cycles) | Stable stress (MPa) | Δεp/2 (%) | Iβ | Wβ (%) | Life ( cycles) | Stable stress (MPa) | Δεp/2 (%) | Iβ | Wβ/ (%) |
0.8 | 21,716 | 663.4 | 0.01 | 0.88 | 37.1 | 4872 | 497.8 | 0.11 | 0.18 | 10.7 |
1.0 | 8388 | 894.4 | 0.13 | 0.37 | 19.8 | 4057 | 568.4 | 0.25 | 0.17 | 10.2 |
1.2 | 3408 | 962.4 | 0.20 | 0.12 | 7.91 | 832 | 652.5 | 0.40 | 0.14 | 8.6 |
1.4 | 1586 | 1012.1 | 0.32 | 0.04 | 3.15 | 526 | 720.5 | 0.62 | 0.15 | 9.1 |
1.6 | 624 | 1047.6 | 0.45 | 0.02 | 1.31 | 349 | 752.3 | 0.74 | 0.15 | 9.1 |
Table 2. Low-cycle fatigue properties of the two experimental alloys.
Ti6Al4V5Cu | Ti6Al4V | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Δεt/2 (%) | Life (cycles) | Stable stress (MPa) | Δεp/2 (%) | Iβ | Wβ (%) | Life ( cycles) | Stable stress (MPa) | Δεp/2 (%) | Iβ | Wβ/ (%) |
0.8 | 21,716 | 663.4 | 0.01 | 0.88 | 37.1 | 4872 | 497.8 | 0.11 | 0.18 | 10.7 |
1.0 | 8388 | 894.4 | 0.13 | 0.37 | 19.8 | 4057 | 568.4 | 0.25 | 0.17 | 10.2 |
1.2 | 3408 | 962.4 | 0.20 | 0.12 | 7.91 | 832 | 652.5 | 0.40 | 0.14 | 8.6 |
1.4 | 1586 | 1012.1 | 0.32 | 0.04 | 3.15 | 526 | 720.5 | 0.62 | 0.15 | 9.1 |
1.6 | 624 | 1047.6 | 0.45 | 0.02 | 1.31 | 349 | 752.3 | 0.74 | 0.15 | 9.1 |
Fig. 6. TEM microstructure observations of the Ti6Al4V5Cu alloy before and after fatigue test with different strain amplitudes: (a) initial microstructure; (b) Δεt/2 = 0.8%; (c) Δεt/2 = 1.0%; (d) Δεt/2 = 1.2%; (e) Δεt/2 = 1.4%; (f) Δεt/2 = 1.6%.
Fig. 7. TEM microstructure observations of the Ti6Al4V alloy before and after fatigue test with different strain amplitudes: (a) initial microstructure; (b) Δεt/2 = 0.8%; (c) Δεt/2 = 1.0%; (d) Δεt/2 = 1.2%; (e) Δεt/2 = 1.4%; (f) Δεt/2 = 1.6%.
Fig. 8. TEM observations of the Ti6Al4V5Cu alloy after fatigue test under the strain amplitude of Δεt/2 = 1.6%. (a) BF image; (b) mapping of Al element; (c) mapping of Cu element; (d) diffraction pattern of α′ phase in area I; (e) BF image of area I; (f) DF image of area I; (g) HRTEM observation of area II; (h) HRTEM observation of area III; (i) HRTEM simulated image of area III showing dislocations.
[1] |
A. Czerwinski, R. Lapovok, D. Tomus, Y. Estrin, A. Vinogradov, J. Alloy. Compd. 509 (2011) 2709-2715.
DOI URL |
[2] |
X. Feng, X. Pan, W. He, P. Liu, Z. An, L. Zhou, Int. J. Fatigue 149 (2021) 106270.
DOI URL |
[3] | X.P. Jiang, C.S. Man, M.J. Shepard, T. Zhai, Mater. Sci. Eng. A (2007) 137- 143 468-470. |
[4] |
N. Tsuji, S. Tanaka, T. Takasugi, Surf. Coat. Technol. 203 (2009) 1400-1405.
DOI URL |
[5] |
S. Kumar, K. Chattopadhyay, V. Singh, J. Alloy. Compd. 724 (2017) 187-197.
DOI URL |
[6] |
S. Carabajar, C. Verdu, A. Hamel, R. Fougères, Mater. Sci. Eng. A 257 (1998) 225-234.
DOI URL |
[7] | M.G. de Mello, F.H. Costa, V. Opini, A. Resende, A. Cremasco, R. Caram, Mater. Res. 23 (2020). |
[8] |
Q. Xue, Y.J. Ma, J.F. Lei, R. Yang, C. Wang, J. Mater. Sci. Technol. 34 (2018) 2507-2514.
DOI |
[9] |
Y. Jung, K. Lee, S.J. Hong, J.K. Lee, J. Han, K.B. Kim, P.K. Liaw, C. Lee, G. Song, J. Alloy. Compd. 886 (2021) 161187.
DOI URL |
[10] |
G. Zhao, X. Xu, D. Dye, P.E.J. Rivera-Díaz-del-Castillo, N. Petrinic, Scr. Mater. 208 (2022) 114362.
DOI URL |
[11] |
L. Choisez, A. Elmahdy, P. Verleysen, P.J. Jacques, Acta Mater. 220 (2021) 117294.
DOI URL |
[12] |
C.L. Li, X.J. Mi, W.J. Ye, S.X. Hui, Y. Yu, W.Q. Wang, Mater. Sci. Eng. A 578 (2013) 103-109.
DOI URL |
[13] |
T. Wang, H. Guo, Y. Wang, X. Peng, Y. Zhao, Z. Yao, Mater. Sci. Eng. A 528 (2011) 2370-2379.
DOI URL |
[14] | H.H. Mehrer, Diffusion in Solid Metals and Alloys, Springer Materials, 1990. |
[15] |
S. Hanada, N. Masahashi, T.K. Jung, Mater. Sci. Eng. A 588 (2013) 403-410.
DOI URL |
[16] | Y.D. Zhang, G.P. Li, C.Z. Liu, F.S. Yuan, F.Z. Han, Ali. Muhanmmad, H.F. Gu, Chin. J. Mater. Res. 33 (2019) 443-451. |
[17] | H. Wu, Y.Q. Zhao, P. Ge, W. Zhou, Rare Metal Mat. Eng. 41 (2012) 805-810. |
[18] |
Y. Ito, N. Hoshi, T. Hayakawa, C. Ohkubo, H. Miura, K. Kimoto, Mater. Sci. Eng. B 245 (2019) 30-36.
DOI URL |
[19] |
S. Panda, S.K. Sahoo, A. Dash, M. Bagwan, G. Kumar, S.C. Mishra, S. Suwas, Mater. Charact. 98 (2014) 93-101.
DOI URL |
[20] |
Q. Xu, W. Li, Y. Yin, J. Zhou, H. Nan, Mater. Sci. Eng. A 832 (2022) 142496.
DOI URL |
[21] |
W.Y. Liu, Y.H. Lin, Y.H. Chen, T.H. Shi, S. Ambrish, Rare Metal Mat. Eng. 46 (2017) 634-639.
DOI URL |
[22] |
R.G. Pigeon, A. Varma, J. Mater. Sci. Lett. 11 (1992) 1370-1372.
DOI URL |
[23] |
Y. Chong, G. Deng, S. Gao, J. Yi, A. Shibata, N. Tsuji, Scr. Mater. 172 (2019) 77-82.
DOI URL |
[24] |
B. Wang, L. Cheng, D. Li, Int. J. Fatigue 156 (2022) 106668.
DOI URL |
[25] |
J.F. Xiao, X.K. Shang, J.H. Hou, Y. Li, B.B. He, Int. J. Plast. 146 (2021) 103103.
DOI URL |
[26] |
Y.G. Li, M.H. Loretto, D. Rugg, W. Voice, Acta Mater 49 (2001) 3011-3017.
DOI URL |
[27] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI |
[28] | Q. Li, Y. Lu, Q. Luo, X. Yang, Y. Yang, J. Tan, Z. Dong, J. Dang, J. Li, Y. Chen, B. Jiang, S. Sun, F. Pan, J. Magn. Alloys 9 (2021) 1922-1941. |
[29] |
O. Slávik, T. Vojtek, L. Poczklán, H.A. Tinoco, T. Kruml, P. Hută r, M. Šmíd, Theor. Appl. Fract. Mech. 118 (2022) 103212.
DOI URL |
[30] | A .A. Griffith, Philos. Trans. R. Soc. Lond. Ser. A, Containing Pap. Math. Phys. Character 221 (1921) 163-198. |
[31] |
E. Orowan, Rep. Prog. Phys. 12 (1949) 185-232.
DOI URL |
[1] | Tianbing He, Tiwen Lu, Daniel Şopu, Xiaoliang Han, Haizhou Lu, Kornelius Nielsch, Jürgen Eckert, Nevaf Ciftci, Volker Uhlenwinkel, Konrad Kosiba, Sergio Scudino. Mechanical behavior and deformation mechanism of shape memory bulk metallic glass composites synthesized by powder metallurgy [J]. J. Mater. Sci. Technol., 2022, 114(0): 42-54. |
[2] | Seyed Amir Arsalan Shams, Jae Wung Bae, Jae Nam Kim, Hyoung Seop Kim, Taekyung Lee, Chong Soo Lee. Origin of superior low-cycle fatigue resistance of an interstitial metastable high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 115(0): 115-128. |
[3] | Zheng Cao, Zhao Cheng, Wei Xu, Lei Lu. Effect of work hardening discrepancy on strengthening of laminated Cu/CuZn alloys [J]. J. Mater. Sci. Technol., 2022, 103(0): 67-72. |
[4] | QiZhao, Magd Abdel Wahab, Yong Ling, Zhiyi Liu. Fatigue crack propagation across grain boundary of Al-Cu-Mg bicrystal based on crystal plasticity XFEM and cohesive zone model [J]. J. Mater. Sci. Technol., 2022, 126(0): 275-287. |
[5] | Congying Xiang, Min Shen, Chongze Hu, Lok Wing Wong, Hongbo Nie, Huasheng Lei, Jian Luo, Jiong Zhao, Zhiyang Yu. Atomistic observation of in situ fractured surfaces at a V-doped WC-Co interface [J]. J. Mater. Sci. Technol., 2022, 110(0): 103-108. |
[6] | Yiping Xia, Hao Wu, Kesong Miao, Xuewen Li, Chao Xu, Lin Geng, Honglan Xie, Guohua Fan. Effects of the layer thickness ratio on the enhanced ductility of laminated aluminum [J]. J. Mater. Sci. Technol., 2022, 111(0): 256-267. |
[7] | Wei Li, Hanyang Liu, Peihua Yin, Wei Yan, Wei Wang, Yiyin Shan, Ke Yang. Special tetrahedral twins in a cryogenically deformed CoCrFeNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 129-136. |
[8] | Ahmad Zafari, Edward Wen Chiek Lui, Mogeng Li, Kenong Xia. Enhancing work hardening and ductility in additively manufactured β Ti: roles played by grain orientation, morphology and substructure [J]. J. Mater. Sci. Technol., 2022, 105(0): 131-141. |
[9] | Yi Xiong, Phani S. Karamched, Chi-Toan Nguyen, David M.Collins, Christopher M.Magazzeni, Edmund Tarleton, Angus J.Wilkinson. Macroscopic analysis of time dependent plasticity in Ti alloys [J]. J. Mater. Sci. Technol., 2022, 124(0): 135-140. |
[10] | Yuhe Huang, Junheng Gao, Vassili Vorontsov, Dikai Guan, Russell Goodall, David Dye, Shuize Wang, Qiang Zhu, W. Mark Rainforth, Iain Todd. Martensitic twinning transformation mechanism in a metastable IVB element-based body-centered cubic high-entropy alloy with high strength and high work hardening rate [J]. J. Mater. Sci. Technol., 2022, 124(0): 217-231. |
[11] | H.X. Xue, X.C. Cai, B.R. Sun, X. Shen, C.C. Du, X.J. Wang, T.T. Yang, S.W. Xin, T.D. Shen. Bulk nanocrystalline W-Ti alloys with exceptional mechanical properties and thermal stability [J]. J. Mater. Sci. Technol., 2022, 114(0): 16-28. |
[12] | Keer Li, W. Chen, G.X. Yu, J.Y. Zhang, S.W. Xin, J.X. Liu, X.X. Wang, J. Sun. Deformation kinking and highly localized nanocrystallization in metastable β-Ti alloys using cold forging [J]. J. Mater. Sci. Technol., 2022, 120(0): 53-64. |
[13] | Z. QU, Z.J. Zhang, J.X. Yan, P. Zhang, B.S. Gong, S.L. Liu, Z.F. Zhang, T.G. Langdan. Examining the effect of the aging state on strength and plasticity of wrought aluminum alloys [J]. J. Mater. Sci. Technol., 2022, 122(0): 54-67. |
[14] | Quan-xin Shi, Cui-ju Wang, Kun-kun Deng, Kai-bo Nie, Yucheng Wu, Wei-min Gan, Wei Liang. Microstructure and mechanical behavior of Mg-5Zn matrix influenced by particle deformation zone [J]. J. Mater. Sci. Technol., 2021, 60(0): 8-20. |
[15] | Guangrong Li, Chunhua Tang, Guanjun Yang. Dynamic-stiffening-induced aggravated cracking behavior driven by metal-substrate-constraint in a coating/substrate system [J]. J. Mater. Sci. Technol., 2021, 65(0): 154-163. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||