J. Mater. Sci. Technol. ›› 2022, Vol. 115: 115-128.DOI: 10.1016/j.jmst.2021.10.010
• Research Article • Previous Articles Next Articles
Seyed Amir Arsalan Shamsa, Jae Wung Baeb, Jae Nam Kima, Hyoung Seop Kima,b, Taekyung Leec,*(), Chong Soo Leea
Received:
2021-08-02
Revised:
2021-09-27
Accepted:
2021-10-02
Published:
2022-07-10
Online:
2022-01-20
Contact:
Taekyung Lee
About author:
*E-mail addresses: taeklee@pnu.edu, taeklee@pnu.ac.kr (T. Lee).Seyed Amir Arsalan Shams, Jae Wung Bae, Jae Nam Kim, Hyoung Seop Kim, Taekyung Lee, Chong Soo Lee. Origin of superior low-cycle fatigue resistance of an interstitial metastable high-entropy alloy[J]. J. Mater. Sci. Technol., 2022, 115: 115-128.
2θ (deg.) | hkl | ν (Å3) | P | |F2| | $\left( \frac{1+{{\cos }^{2}}2\theta }{{{\sin }^{2}}2\theta \cos \theta } \right)$ | e-2M | R |
---|---|---|---|---|---|---|---|
43.46 | (111)γ | 46.86 | 8 | 4970 | 11.99 | 0.96 | 208.5 |
46.82 | (10-11)ε | 22.98 | 12 | 878 | 10.13 | 0.95 | 193.28 |
50.62 | (200)γ | 46.86 | 6 | 4390 | 8.49 | 0.94 | 96.53 |
61.70 | (10-12)ε | 22.98 | 12 | 228 | 5.42 | 0.93 | 26.10 |
74.34 | (220)γ | 46.86 | 12 | 3020 | 3.69 | 0.90 | 54.48 |
Table 1. Parameters used to calculate the volume fraction of ε and γ phases based on the XRD results.
2θ (deg.) | hkl | ν (Å3) | P | |F2| | $\left( \frac{1+{{\cos }^{2}}2\theta }{{{\sin }^{2}}2\theta \cos \theta } \right)$ | e-2M | R |
---|---|---|---|---|---|---|---|
43.46 | (111)γ | 46.86 | 8 | 4970 | 11.99 | 0.96 | 208.5 |
46.82 | (10-11)ε | 22.98 | 12 | 878 | 10.13 | 0.95 | 193.28 |
50.62 | (200)γ | 46.86 | 6 | 4390 | 8.49 | 0.94 | 96.53 |
61.70 | (10-12)ε | 22.98 | 12 | 228 | 5.42 | 0.93 | 26.10 |
74.34 | (220)γ | 46.86 | 12 | 3020 | 3.69 | 0.90 | 54.48 |
Fig. 1. Inverse pole figure (IPF) and corresponding phase maps of (a) FG and (b) CG alloys before the mechanical tests. The alloys were rolled along the vertical axis. The red, black, and blue lines in the phase maps indicate low-angle grain boundaries (LAGBs, 2° < θ < 15°), high-angle grain boundaries (HAGBs, 15° < θ < 58°), and Σ3 boundaries (58° < θ < 62°), respectively; the fractions of these boundaries are presented in each map. The white and gray areas in the phase maps indicate γ and ε phases, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. Back-scattered electron images of (a) FG and (b) CG before mechanical loading. The higher magnification of the yellow rectangular in (a) is shown in (c). The EDS elemental maps are from the yellow rectangular in (c). Red arrows in (c) show the location of carbide particles. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. Uniaxial tensile behavior of the investigated alloys: (a) engineering, (b) true stress-strain and (c) strain-hardening curves. The previous data [13] were also included for discussion purposes.
Fig. 5. Deformed microstructures of (a) FG and (b-d) CG alloys subjected to uniaxial tension along the vertical axis. The black-lined region in Fig. 2(b) was magnified in the form of (c) a phase map and (d) corresponding IPF map of the γ phase. The black, blue, and green lines in the phase maps indicate HAGBs (15° < θ < 58°), Σ3 boundaries (58° < θ < 62°), and the Shoji-Nishiyama orientation relationship [42], respectively. The white and gray areas indicate γ and ε phases, respectively. The yellow and red arrows in Fig. 4(c) indicate the mechanical twinning in and bidirectional transformation of the alloys, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 6. Fatigue behaviors of FG and CG alloys, and the reported CoCrFeMnNi-0.7C alloys with different grain sizes [13]: (a) Coffin–Manson plot, (b) $\frac{\text{ }\!\!\Delta\!\!\text{ }\sigma }{2}$ plot, and (c) $\frac{\text{ }\!\!\Delta\!\!\text{ }{{\varepsilon }_{\text{t}}}}{2}$ plot with respect to the terms of 2Nf.
Material | Grain size (μm) | εf′ | c | b | σf′ (MPa) |
---|---|---|---|---|---|
FG | 5.5 | 0.27 | -0.456 | -0.103 | 1343 |
CG | 70 | 0.94 | -0.554 | -0.119 | 1076 |
CoCrFeMnNi-0.7C [ | 10 | 0.24 | -0.441 | -0.124 | 1457 |
66 | 0.42 | -0.494 | -0.130 | 1220 |
Table 2. Fatigue parameters of the present and reported [13] HEAs.
Material | Grain size (μm) | εf′ | c | b | σf′ (MPa) |
---|---|---|---|---|---|
FG | 5.5 | 0.27 | -0.456 | -0.103 | 1343 |
CG | 70 | 0.94 | -0.554 | -0.119 | 1076 |
CoCrFeMnNi-0.7C [ | 10 | 0.24 | -0.441 | -0.124 | 1457 |
66 | 0.42 | -0.494 | -0.130 | 1220 |
Fig. 8. EBSD phase maps and corresponding image quality maps of the CG HEA at (a) 0, (b) 20, (c) 200, (d) 1000, and (e) 3000 cycles at $\frac{\text{ }\!\!\Delta\!\!\text{ }\sigma }{2}$ = 0.7%. The alloys were subjected to cyclic loading along the vertical axis. The black, blue, and green lines in the phase maps indicate HAGBs (15° < θ < 58°), Σ3 boundaries (58° < θ < 62°), and the Shoji–Nishiyama orientation relationship [42], respectively. The white and gray areas indicate γ and ε phases, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. XRD line profiles of CG HEA for various numbers of loading cycles at $\frac{\text{ }\!\!\Delta\!\!\text{ }\sigma }{2}$ = 0.7%. The inset is a magnified line profile for the ($10\bar{1}1$)ε peak at 2θ between 46.0° and 47.6°
Fig. 10. TEM micrographs of the CG alloy subjected to cyclic loading at $\frac{\text{ }\!\!\Delta\!\!\text{ }\sigma }{2}$ = 0.7%: (a–d) 1000 cycles, (e) 4000 cycles, and (f) fractured. (b) is the selected area diffraction pattern for the yellow-lined region in (a). (c) and (d) are the dark-field images corresponding to the spots designated in (b). (e) is the magnified image of the region in Fig. 9(d). The yellow arrows indicate fragmented SFs. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 11. The ECCI micrographs (a, c, d) and EBSD phase map (b) of CG after fatigue fracture at $\frac{\text{ }\!\!\Delta\!\!\text{ }\sigma }{2}$ = 0.85%. The ECCI micrograph in Fig. 11(a) and EBSD phase maps in Fig. 11(b) are from the same location. The higher magnification of the region indicated by yellow rectangular in Fig. 11(a) is presented in Fig. 11(c). Fig. 11(d) is from other grain of this specimen. The black, blue, and green lines in the phase map indicate HAGBs (15° < θ < 58°), Σ3 boundaries (58° < θ < 62°), and the Shoji–Nishiyama orientation relationship [42], respectively. The white and gray areas indicate γ and ε phases, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 12. ECCI micrographs (a, c, d) and EBSD phase map of FG after fatigue fracture at $\frac{\text{ }\!\!\Delta\!\!\text{ }\sigma }{2}$= 0.85%. The ECCI micrograph in Fig. 12(a) and EBSD phase map in Fig. 12(b) are from the same location. The higher magnification of the regions indicated by yellow rectangular in Fig. 12(a) are presented in Fig. 12(c) and (d). The black, blue, and green lines in the phase maps indicate HAGBs (15° < θ < 58°), Σ3 boundaries (58° < θ < 62°), and the Shoji–Nishiyama orientation relationship [42], respectively. The white and gray areas indicate γ and ε phases, respectively.
Fig. 13. EBSD phase maps of the CG alloy after fatigue fracture at $\frac{\text{ }\!\!\Delta\!\!\text{ }\sigma }{2}$ of (a) 0.4%, (b) 0.55%, (c) 0.7%, and (d) 0.85%. The alloys were subjected to cyclic loading along the vertical axis. The red, black, blue, and green lines in the phase maps indicate LAGBs (2° < θ < 15°), HAGBs (15° < θ < 58°), Σ3 boundaries (58° < θ < 62°), and the Shoji–Nishiyama orientation relationship [42], respectively. The white and gray areas indicate γ and ε phases, respectively, of which the area fractions were provided. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 14. XRD analysis of the investigated HEAs after fatigue fracture at $\frac{\text{ }\!\!\Delta\!\!\text{ }\sigma }{2}$ values from 0.4% to 0.85%: (a) XRD line profiles for the FG alloys, (b) those for the CG alloys, and (c) ε-martensitic fractions calculated from the XRD results. The insets in Fig. 14(a) and (b) are the magnified line profiles for the ($10\bar{1}1$)ε peak. The line profile of the initial alloys (“As”) were also provided for comparison purposes.
[1] | M.J. Yao, K.G. Pradeep, C.C. Tasan, D. Raabe, Scr. Mater. 72- 73 (2014) 5-8. |
[2] |
Z. Li, D. Raabe, JOM 69 (2017) 2099-2106.
DOI URL |
[3] |
Y.Z. Tian, S.J. Sun, H.R. Lin, Z.F. Zhang, J. Mater. Sci. Technol. 35 (2019) 334-340.
DOI |
[4] |
Y.K. Kim, G.S. Ham, H.S. Kim, K.A. Lee, Intermetallics 111 (2019) 106486.
DOI URL |
[5] |
K. Liu, S.S. Nene, M. Frank, S. Sinha, R.S. Mishra, Appl. Mater. Today 15 (2019) 525-530.
DOI |
[6] |
K. Liu, S.S. Nene, M. Frank, S. Sinha, R.S. Mishra, Mater. Res. Lett. 6 (2018) 613-619.
DOI URL |
[7] | A.G. Wang, X.H. An, J. Gu, X.G. Wang, L.L. Li, W.L. Li, M. Song, Q.Q. Duan, Z.F. Zhang, X.Z. Liao, J. Mater. Sci. Technol. 157 (2019) 106192. |
[8] |
S.A.A. Shams, G. Jang, J.W. Won, J.W. Bae, H. Jin, H.S. Kim, C.S. Lee, Mater. Sci. Eng. A 792 (2020) 139661.
DOI URL |
[9] |
K. Suzuki, M. Koyama, S. Hamada, K. Tsuzaki, H. Noguchi, Int. J. Fatigue 133 (2020) 105418.
DOI URL |
[10] |
K.V.S. Thurston, B. Gludovatz, A. Hohenwarter, G. Laplanche, E.P. George, R.O. Ritchie, Intermetallics 88 (2017) 65-72.
DOI URL |
[11] |
K.V.S. Thurston, B. Gludovatz, Q. Yu, G. Laplanche, E.P. George, R.O. Ritchie, J. Alloys Compd. 794 (2019) 525-533.
DOI URL |
[12] |
S. Mizumachi, M. Koyama, Y. Fukushima, K. Tsuzaki, ISIJ Int 60 (2020) 175-181.
DOI URL |
[13] |
S.A.A. Shams, G. Kim, J.W. Won, J.N. Kim, H.S. Kim, C.S. Lee, Mater. Sci. Eng. A 810 (2021) 140985.
DOI URL |
[14] |
Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534 (2016) 227-230.
DOI URL |
[15] |
L.M. Dougherty, G.T. Gray, E.K. Cerreta, R.J. McCabe, R.D. Field, J.F. Bingert, Scr. Mater. 60 (2009) 772-775.
DOI URL |
[16] |
E. Nagy, V. Mertinger, F. Tranta, J. Sólyom, Mater. Sci. Eng. A 378 (2004) 308-313.
DOI URL |
[17] |
J. Talonen, H. Hänninen, Acta Mater 55 (2007) 6108-6118.
DOI URL |
[18] |
B.C. De Cooman, Y. Estrin, S.K. Kim, Acta Mater 142 (2018) 283-362.
DOI URL |
[19] |
O. Grässel, L. Krüger, G. Frommeyer, L.W. Meyer, Int. J. Plast. 16 (20 0 0) 1391-1409.
DOI URL |
[20] |
A. Sato, E. Chishima, K. Soma, T. Mori, Acta Metall 30 (1982) 1177-1183.
DOI URL |
[21] |
W.J. Lee, B. Weber, G. Feltrin, C. Czaderski, M. Motavalli, C. Leinenbach, Mater. Sci. Eng. A 581 (2013) 1-7.
DOI URL |
[22] |
T. Sawaguchi, I. Nikulin, K. Ogawa, K. Sekido, S. Takamori, T. Maruyama, Y. Chiba, A. Kushibe, Y. Inoue, K. Tsuzaki, Scr. Mater. 99 (2015) 49-52.
DOI URL |
[23] |
A.S. Hamada, L.P. Karjalainen, J. Puustinen, Mater. Sci. Eng. A 517 (2009) 68-77.
DOI URL |
[24] |
I. Nikulin, T. Sawaguchi, K. Tsuzaki, Mater. Sci. Eng. A 587 (2013) 192-200.
DOI URL |
[25] |
I. Nikulin, T. Sawaguchi, K. Ogawa, K. Tsuzaki, Acta Mater 105 (2016) 207-218.
DOI URL |
[26] |
I. Nikulin, N. Nagashima, F. Yoshinaka, T. Sawaguchi, Mater. Lett. 230 (2018) 257-260.
DOI URL |
[27] |
J.-.O. Nilsson, Scr. Metall. 17 (1983) 593-596.
DOI URL |
[28] |
Y.B. Ju, M. Koyama, T. Sawaguchi, K. Tsuzaki, H. Noguchi, Acta Mater 112 (2016) 326-336.
DOI URL |
[29] |
Z. Li, F. Körmann, B. Grabowski, J. Neugebauer, D. Raabe, Acta Mater 136 (2017) 262-270.
DOI URL |
[30] |
S. Chen, H.S. Oh, B. Gludovatz, S.J. Kim, E.S. Park, Z. Zhang, R.O. Ritchie, Q. Yu, Nat. Commun. 11 (2020) 1-8.
DOI URL |
[31] | X. Wu, Z. Li, Z. Rao, Y. Ikeda, B. Dutta, F. Körmann, J. Neugebauer, D. Raabe, Phys. Rev. Mater. 4 (2020) 1-14. |
[32] |
S.M. Vakili, A. Zarei-Hanzaki, A.S. Anoushe, H.R. Abedi, M.H. Mohammad-E-brahimi, M. Jaskari, S.S. Sohn, D. Ponge, L.P. Karjalainen, Acta Mater 185 (2020) 474-492.
DOI URL |
[33] |
T. Niendorf, T. Wegener, Z. Li, D. Raabe, Scr. Mater. 143 (2018) 63-67.
DOI URL |
[34] |
Z. Li, C.C. Tasan, K.G. Pradeep, D. Raabe, Acta Mater 131 (2017) 323-335.
DOI URL |
[35] | G.H. Kim, Y. Nishimura, Y. Watanabe, H. Sato, Y. Nishino, H.R. Jung, C.Y. Kang, I.S. Kim, Mater. Sci. Eng. A 521- 522 (2009) 368-371. |
[36] | B.D. Culity, S.R. Stock, Elements of X-Ray Diffraction, 3rd ed.,Pearson Educa-tion Limited, London, 2014. |
[37] | Z. Li, C.C. Tasan, H. Springer, B. Gault, D. Raabe, Sci. Rep. 7 (2017) 1-7. |
[38] |
J.R. Cahoon, Q. Li, N.L. Richards, Mater. Sci. Eng. A 526 (2009) 56-61.
DOI URL |
[39] |
G. Wang, H. Peng, C. Zhang, S. Wang, Y. Wen, Smart Mater. Struct. 25 (2016) 075013.
DOI URL |
[40] |
Z. Wang, W. Lu, D. Raabe, Z. Li, J. Alloys Compd. 781 (2019) 734-743.
DOI URL |
[41] |
W. Lu, C.H. Liebscher, G. Dehm, D. Raabe, Z. Li, Adv. Mater. 30 (2018) 1804727.
DOI URL |
[42] |
G.B. Olson, M. Cohen, J. Less-Common Met. 28 (1972) 107-118.
DOI URL |
[43] |
J.R.C. Guimarães, P.R. Rios, J. Mater. Sci. 45 (2010) 1074-1077.
DOI URL |
[44] | M.M. Pan, X.M. Zhang, D. Zhou, R.D.K. Misra, P. Chen, Mater. Sci. Eng. A 703 (2020) 140107. |
[45] |
M. Wang, Z. Li, D. Raabe, Acta Mater 147 (2018) 236-246.
DOI URL |
[46] |
S. Kajiwara, Metall. Mater. Trans. A 17 (1986) 1693-1702.
DOI URL |
[47] | G.B. Olson, M. Cohen, Metall. Mater. Trans. A 7 (1976) 1905-1914. |
[48] |
J. Su, X. Wu, D. Raabe, Z. Li, Acta Mater 167 (2019) 23-39.
DOI URL |
[49] |
S. Wei, J. Kim, J.L. Cann, R. Gholizadeh, N. Tsuji, C.C. Tasan, Scr. Mater. 185 (2020) 36-41.
DOI URL |
[50] | S.S. Manson, Behavior of Materials under Conditions of Thermal Stress, Univer- sity of Michigan Engineering Research Institute, 1953. |
[51] | L.F. Coffin Jr, Trans. ASME 76 (1954) 931-950. |
[52] |
C.W. Shao, P. Zhang, Y.K. Zhu, Z.J. Zhang, J.C. Pang, Z.F. Zhang, Acta Mater 134 (2017) 128-142.
DOI URL |
[53] |
C.E. Feltner, C. Laird, Acta Metall 15 (1967) 1621-1632.
DOI URL |
[54] |
T. Sawaguchi, T. Maruyama, H. Otsuka, A. Kushibe, Y. Inoue, K. Tsuzaki, Mater. Trans. 57 (2016) 283-293.
DOI URL |
[55] | T. Eguchi, M. Koyama, Y. Fukushima, C.C. Tasan, K. Tsuzaki, Proc. Struct. Integr. 13 (2018) 831-836. |
[56] |
T. Niendorf, F. Rubitschek, H.J. Maier, J. Niendorf, H.A. Richard, A. Frehn, Mater. Sci. Eng. A 527 (2010) 2412-2417.
DOI URL |
[57] |
C.W. Shao, P. Zhang, R. Liu, Z.J. Zhang, J.C. Pang, Q.Q. Duan, Z.F. Zhang, Acta Mater 118 (2016) 196-212.
DOI URL |
[58] |
S. Martin, S. Wolf, U. Martin, L. Krüger, D. Rafaja, Metall. Mater. Trans. A 47 (2016) 49-58.
DOI URL |
[59] |
A. Poulon, S. Brochet, J.C. Glez, J.D. Mithieux, J.B. Vogt, Adv. Eng. Mater. 12 (2010) 1041-1046.
DOI URL |
[60] |
H. Mughrabi, Procedia Eng 2 (2010) 3-26.
DOI URL |
[61] |
J. Awatani, K. Katagiri, K. Koyanagi, Metall. Mater. Trans. A 10 (1979) 503-507.
DOI URL |
[1] | Yan Liu, Jinshan Li, Bin Tang, William Yi Wang, Minjie Lai, Lei Zhu, Hongchao Kou. Formation mechanism of γ twins in β-solidified γ-TiAl alloys [J]. J. Mater. Sci. Technol., 2022, 105(0): 164-171. |
[2] | Xue Yan, Cheng Zhang, Yangshuai Li, Youjian Yi, Ziruo Cui, Bingyuan Han. Laser-induced topology optimized amorphous nanostructure and corrosion electrochemistry of supersonically deposited Ni30Cr25Al15Co15Mo5Ti5Y5 HEA coating based on AIMD [J]. J. Mater. Sci. Technol., 2022, 106(0): 257-269. |
[3] | Shengfeng Zhou, Min Xie, Changyi Wu, Yanliang Yi, Dongchu Chen, Lai-Chang Zhang. Selective laser melting of bulk immiscible alloy with enhanced strength: Heterogeneous microstructure and deformation mechanisms [J]. J. Mater. Sci. Technol., 2022, 104(0): 81-87. |
[4] | Wei Li, Hanyang Liu, Peihua Yin, Wei Yan, Wei Wang, Yiyin Shan, Ke Yang. Special tetrahedral twins in a cryogenically deformed CoCrFeNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 129-136. |
[5] | Dong Huang, Yanxin Zhuang. Break the strength-ductility trade-off in a transformation-induced plasticity high-entropy alloy reinforced with precipitation strengthening [J]. J. Mater. Sci. Technol., 2022, 108(0): 125-132. |
[6] | Xuehui Yan, Peter K. Liaw, Yong Zhang. Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates [J]. J. Mater. Sci. Technol., 2022, 110(0): 109-116. |
[7] | Yang Jianyan, Ren Weijun, Zhao Xinguo, Kikuchi Tatsuya, Miao Ping, Nakajima Kenji, Li Bing, Zhang Zhidong. Mictomagnetism and suppressed thermal conduction of the prototype high-entropy alloy CrMnFeCoNi [J]. J. Mater. Sci. Technol., 2022, 99(0): 55-60. |
[8] | W.T. Lin, G.M. Yeli, G. Wang, J.H. Lin, S.J. Zhao, D. Chen, S.F. Liu, F.L. Meng, Y.R. Li, F. He, Y. Lu, J.J. Kai. He-enhanced heterogeneity of radiation-induced segregation in FeNiCoCr high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 101(0): 226-233. |
[9] | Kaiju Lu, Ankur Chauhan, Dimitri Litvinov, Aditya Srinivasan Tirunilai, Jens Freudenberger, Alexander Kauffmann, Martin Heilmaier, Jarir Aktaa. Micro-mechanical deformation behavior of CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 237-245. |
[10] | Mengyuan He, Nan Jia, Xiaochun Liu, Yongfeng Shen, Liang Zuo. Abnormal chemical composition fluctuations in multi-principal-element alloys induced by simple cyclic deformation [J]. J. Mater. Sci. Technol., 2022, 113(0): 287-295. |
[11] | Wei Zhang, Zhichao Ma, Chaofan Li, Chaowei Guo, Dongni Liu, Hongwei Zhao, Luquan Ren. Micro/nano-mechanical behaviors of individual FCC, BCC and FCC/BCC interphase in a high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 114(0): 102-110. |
[12] | Junjie Wang, Zongde Kou, Shu Fu, Shangshu Wu, Sinan Liu, Mengyang Yan, Zhiqiang Ren, Di Wang, Zesheng You, Si Lan, Horst Hahn, Xun-Li Wang, Tao Feng. Ultrahard BCC-AlCoCrFeNi bulk nanocrystalline high-entropy alloy formed by nanoscale diffusion-induced phase transition [J]. J. Mater. Sci. Technol., 2022, 115(0): 29-39. |
[13] | Young-Kyun Kim, Min-Chul Kim, Kee-Ahn Lee. 1.45 GPa ultrastrong cryogenic strength with superior impact toughness in the in-situ nano oxide reinforced CrMnFeCoNi high-entropy alloy matrix nanocomposite manufactured by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 97(0): 10-19. |
[14] | Pengyu Wen, Bin Hu, Jiansheng Han, Haiwen Luo. A strong and ductile medium Mn steel manufactured via ultrafast heating process [J]. J. Mater. Sci. Technol., 2022, 97(0): 54-68. |
[15] | Xiaolin Li, Xiaoxiao Hao, Chi Jin, Qi Wang, Xiangtao Deng, Haifeng Wang, Zhaodong Wang. The determining role of carbon addition on mechanical performance of a non-equiatomic high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 110(0): 167-177. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||