J. Mater. Sci. Technol. ›› 2022, Vol. 115: 129-139.DOI: 10.1016/j.jmst.2021.10.049
• Research Article • Previous Articles Next Articles
B. Li, H.J. Li(), X.Y. Yao(
), X.F. Tian, Y.J. Jia, G.H. Feng
Received:
2021-09-06
Revised:
2021-10-16
Accepted:
2021-10-22
Published:
2022-07-10
Online:
2022-01-29
Contact:
H.J. Li,X.Y. Yao
About author:
yaoxiyuan@nwpu.edu.cn (X.Y. Yao).B. Li, H.J. Li, X.Y. Yao, X.F. Tian, Y.J. Jia, G.H. Feng. Ablation behavior of (ZrC/SiC)3 alternate coating prepared on sharp leading edge C/C composites by CVD[J]. J. Mater. Sci. Technol., 2022, 115: 129-139.
Fig. 2. Surface SEM image (a) and cross-section BSE image (b) of (ZrC/SiC)3 alternate coating; cross-section BSE image of ZrC/SiC double layered coating (c); line scanning EDS pattern of (ZrC/SiC)3 alternate coating (d).
Fig. 8. Surface SEM images of ZrC/SiC double layered coating after ablation: (a) central region; (b) transition region; (c) border region; (d) EDS patterns.
Fig. 9. Surface SEM images of (ZrC/SiC)3 alternate coating after ablation: (a) and (e) central region; (b) and (f) transition region; (c) and (g) border region; (d) and (h) wires.
Fig. 11. Cross-section BSE images of (ZrC/SiC)3 alternate coating in central region after ablation (a): (b), (c) and (d) the enlarged morphology in (a); (e) and (f) EDS patterns in Fig. (b-c).
Fig. 12. Cross-section BSE images of (ZrC/SiC)3 alternate coating in transition region after ablation (a) (b), (c) and (d) the enlarged morphology in (a), (e) and (f) EDS patterns in Fig. (b-d).
Fig. 13. (a) and (b) Cross-section BSE images of the bulges; (c) bulges on the surface of layer in transition region; (d), (e) and (f) the EDS mappings of Fig. (b).
Fig. 14. Cross-section BSE images of (ZrC/SiC)3 alternate coating in border region after ablation (a): (b) and (c) the enlarged morphology in (a); (d) the enlarged morphology in (c); (e) and (f) EDS patterns in (b) and (d).
Fig. 16. Schematic of the oxyacetylene ablation regions of (ZrC/SiC)3 alternate coating on C/C composites: (a) central region; (b) transition region; (c) border region.
[1] |
T. Squire, J. Marschall, J. Eur. Ceram. Soc. 30 (2010) 2239-2251.
DOI URL |
[2] |
T.A. Parthasarathy, M.D. Petry, M.K. Cinibulk, T. Mathur, M.R. Gruber, J. Am. Ceram. Soc. 96 (2013) 907-915.
DOI URL |
[3] |
F. Monteverde, R. Savino, J. Am. Ceram. Soc. 95 (2012) 2282-2289.
DOI URL |
[4] |
Q.C. He, H.J. Li, X.M. Yin, J.H. Lu, J. Mater. Sci. Technol. 71 (2022) 55-66.
DOI URL |
[5] |
E. Fitzer, Carbon N Y 25 (1987) 163-190.
DOI URL |
[6] |
Z.H. Hou, W. Yang, J.S. Li, R.Y. Luo, H.Z. Xu, Carbon N Y 99 (2016) 533-540.
DOI URL |
[7] |
Y.L. Xu, W. Sun, X. Xiong, F.Q. Liu, X.G. Luan, J. Mater. Sci. Technol. 35 (2019) 2785-2798.
DOI URL |
[8] |
N.P. Padture, Nat. Mater. 15 (2016) 804-809.
DOI PMID |
[9] |
M.M. Oana, P. Neff, M. Valdez, A. Powell, M. Packard, L.S. Walker, E.L. Corral, J. Am. Ceram. Soc. 98 (2015) 1300-1307.
DOI URL |
[10] |
Q.G. Fu, P. Zhang, L. Zhuang, L. Zhou, J.P. Zhang, J. Wang, X.H. Hou, R. Ralf, H.J. Li, J. Mater. Sci. Technol. 96 (2022) 31-68.
DOI URL |
[11] |
X. Yang, Y.H. Zou, Q.Z. Huang, Z.A. Su, M.Y. Zhang, X. Chang, Z.Y. Xie, J. Mater. Sci. Technol. 26 (2010) 106-113.
DOI URL |
[12] |
A.J. Sánchez-Herencia, L. James, F.F. Lange, J. Eur. Ceram. Soc. 20 (20 0 0) 1297-1300.
DOI URL |
[13] |
X.T. Shen, N. Gao, Z.Q. Shi, X. Wang, L.L. Zhang, J.F. Huang, K.Z. Li, Corros. Sci. 185 (2021) 109409.
DOI URL |
[14] |
R.X. He, K.Z. Li, L.Q. Liu, Corros. Sci. 188 (2021) 109541.
DOI URL |
[15] |
Y. Xiang, W. Li, S. Wang, Z.H. Chen, Ceram. Int. 38 (2012) 2893-2897.
DOI URL |
[16] |
X.H. Shi, J.H. Huo, J.L. Zhu, L. Liu, H.J. Li, X.J. Hu, M.Y. Li, L.J. Guo, Q.G. Fu, Corros. Sci. 88 (2014) 49-55.
DOI URL |
[17] |
Y. Cheng, P. Hu, W.Z. Zhang, C. Ma, J.X. Feng, Q.P. Fan, X.H. Zhang, S.Y. Du, J. Eur. Ceram. Soc. 39 (2019) 2251-2256.
DOI |
[18] |
P. Hu, Y. Cheng, D.Y. Zhang, L.C. Xun, M. Liu, C. Zhang, X.H. Zhang, S.Y. Du, Compos. Part B-Eng. 174 (2019) 107023.
DOI URL |
[19] |
Y.J. Jia, H.J. Li, L. Feng, J.J. Sun, K.Z. Li, Q.G. Fu, Corros. Sci. 104 (2016) 61-70.
DOI URL |
[20] |
J.G. Kim, S.J. Park, J.Y. Park, D.J. Choi, Ceram. Int. 41 (2015) 211-216.
DOI URL |
[21] |
Y.J. Jia, H.J. Li, Q.G. Fu, Zhao Z.G, J.J. Sun, Corros. Sci. 123 (2017) 40-54.
DOI URL |
[22] |
B. Li, H.J. Li, X. Hu, G.H. Feng, X.Y. Yao, P.P. Wang, J. Eur. Ceram. Soc. 40 (2020) 2768-2780.
DOI URL |
[23] |
J.G. Gao, Y.D. He, D.R. Wang, J. Eur. Ceram. Soc. 31 (2011) 79-84.
DOI URL |
[24] |
W.B. Fu, M.J. Dai, C.B. Wei, M.C. Zhao, L. Hu, H.J. Hou, S.S. Lin, Rare Metal Mat. Eng. 45 (2016) 2543-2548.
DOI URL |
[25] |
G.D. Li, X. Xiong, B.Y. Huang, K.L. Huang, T. Nonferr. Metal. Soc. 18 (2008) 255-261.
DOI URL |
[26] |
J.J. Xu, T.T. Yang, Y. Yang, Y.H. Qian, M.S. Li, X.H. Yin, Corros. Sci. 132 (2018) 161-169.
DOI URL |
[27] | J.W. Brockmeyer, S. Heng, B.E. Williams, Characterization and Applications at the TMS Annual Meeting, San Antonio, Texas, 1998. |
[28] |
D. Hu, Q.G. Fu, T.Y. Liu, M.D. Tong, J. Eur. Ceram. Soc. 40 (2020) 212-219.
DOI URL |
[29] |
G.H. Feng, H.J. Li, X.Y. Yao, H. Zhou, Y.L. Yu, J.H. Lu, J. Eur. Ceram. Soc. 41 (2021) 3207-3218.
DOI URL |
[30] |
Q.M. Liu, J. Liu, X.G. Luan, J. Mater. Sci. Technol. 35 (2019) 2942-2949.
DOI URL |
[31] |
M. Ducarroir, P. Salles, C. Bernard, J. Electrochem. Soc. 132 (1985) 704-706.
DOI URL |
[32] |
X.M. Chen, H.Q. Liu, Q.H. Guo, S.P. Sun, Int. J. Refract. Met. Hard Mater. Hard Mater. 31 (2012) 171-178.
DOI URL |
[33] |
B. Li, H.J. Li, X.Y. Yao, Y.G. Chen, X. Hu, G.H. Feng, J.H. Lu, Corros. Sci. 175 (2020) 108895.
DOI URL |
[34] |
Z.G. Zhao, K.Z. Li, W. Li, L.L. Zhang, Corros. Sci. 181 (2021) 109202.
DOI URL |
[35] | A. Paul, D.D. Jayaseelan, S. Venugopal, E. Zapata-Solvas, J. Binner, B. Vaid-hyananthan, A. Heaton, P. Brown, W.E. Lee, Am. Ceram. Soc. Bull. 91 (2012) 22-28. |
[36] |
X.H. Pan, Y.R. Niu, X.T. Xu, X. Zhong, M.H. Shi, X.B. Zheng, C.X. Ding, Corros. Sci. 170 (2020) 108645.
DOI URL |
[37] | K.J. Kim, Adv. Mat. Res. (2012) 748-752 488-489. |
[38] | M.D. Tong, Q.G. Fu, S.T. Yao, T.Y. Liu, T. Feng, D. Hu, L. Zhou, J. Materiomics. 2 (2020) 263-273. |
[39] |
S.L. Wang, K.Z. Li, H.J. Li, Y.L. Zhang, W.Y. Zhang, Int. J. Refract. Met. H. 48 (2015) 108-114.
DOI URL |
[40] |
L.Y. Zhao, D.C. Jia, X.M. Duan, Z.H. Yang, Y. Zhou, J. Eur. Ceram. Soc. 32 (2012) 947-954.
DOI URL |
[41] |
H.J. Li, Y.J. Wang, Q.G. Fu, Surf. Eng. 33 (2017) 803-809.
DOI URL |
[1] | Chenglong Hu, Rida Zhao, Sajjad Ali, Yuanhong Wang, Shengyang Pang, Jian Li, Sufang Tang. Deposition kinetics and mechanism of pyrocarbon for electromagnetic-coupling chemical vapor infiltration process [J]. J. Mater. Sci. Technol., 2022, 101(0): 118-127. |
[2] | Lei Zhou, Jiaping Zhang, Dou Hu, Qiangang Fu, Wuqing Ding, Jiaqi Hou, Bing Liu, Mingde Tong. High temperature oxidation and ablation behaviors of HfB2-SiC/SiC coatings for carbon/carbon composites fabricated by dipping-carbonization assisted pack cementation [J]. J. Mater. Sci. Technol., 2022, 111(0): 88-98. |
[3] | Kun Ye, Bochong Wang, Anmin Nie, Kun Zhai, Fusheng Wen, Congpu Mu, Zhisheng Zhao, Jianyong Xiang, Yongjun Tian, Zhongyuan Liu. Broadband photodetector of high quality Sb2S3 nanowire grown by chemical vapor deposition [J]. J. Mater. Sci. Technol., 2021, 75(0): 14-20. |
[4] | Shijing Wei, Yabin Hao, Zhe Ying, Chuan Xu, Qinwei Wei, Sen Xue, Hui-Ming Cheng, Wencai Ren, Lai-Peng Ma, You Zeng. Transfer-free CVD graphene for highly sensitive glucose sensors [J]. J. Mater. Sci. Technol., 2020, 37(0): 71-76. |
[5] | Tong Zhao, Zhibo Liu, Xing Xin, Hui-Ming Cheng, Wencai Ren. Defective graphene as a high-efficiency Raman enhancement substrate [J]. J. Mater. Sci. Technol., 2019, 35(9): 1996-2002. |
[6] | Yonglong Xu, Wei Sun, Xiang Xiong, Fuqun Liu, Xingang Luan. Ablation characteristics of mosaic structure ZrC-SiC coatings on low-density, porous C/C composites [J]. J. Mater. Sci. Technol., 2019, 35(12): 2785-2798. |
[7] | Peng Xiao, Zhichao Li, Zeyan Liu, Zhuan Li, Bengu Zhang, Jinwei Li, Yang Li. Microstructures and mechanical behaviors of CVI-based C/C composites containing h-BN powdered additives [J]. J. Mater. Sci. Technol., 2019, 35(12): 2824-2831. |
[8] | , Yongsheng Liu, Mingxi Zhao, Fang Ye, Laifei Cheng. Effect of heat treatment temperature on microstructure and electromagnetic shielding properties of graphene/SiBCN composites [J]. J. Mater. Sci. Technol., 2019, 35(12): 2897-2905. |
[9] | Igor Iatsunskyi, Margarita Baitimirova, Emerson Coy, Luis Yate, Roman Viter, Arunas Ramanavicius, Stefan Jurga, Mikhael Bechelany, Donats Erts. Influence of ZnO/graphene nanolaminate periodicity on their structural and mechanical properties [J]. J. Mater. Sci. Technol., 2018, 34(9): 1487-1493. |
[10] | Zhongtao Chen, Xinli Guo, Long Zhu, Long Li, Yuanyuan Liu, Li Zhao, Weijie Zhang, Jian Chen, Yao Zhang, Yuhong Zhao. Direct growth of graphene on vertically standing glass by a metal-free chemical vapor deposition method [J]. J. Mater. Sci. Technol., 2018, 34(10): 1919-1924. |
[11] | Feng Ying,J. Trainer Daniel,Peng Hongshang,Liu Ye,Chen Ke. Safe growth of graphene from non-flammable gas mixtures via chemical vapor deposition [J]. J. Mater. Sci. Technol., 2017, 33(3): 285-290. |
[12] | Feng Lei,Li Ke-Zhi,Lu Jin-Hua,Qi Le-Hua. Effect of Growth Temperature on Carbon Nanotube Grafting Morphology and Mechanical Behavior of Carbon Fibers and Carbon/Carbon Composites [J]. J. Mater. Sci. Technol., 2017, 33(1): 65-70. |
[13] | Jia Yujun,Li Hejun,Li Lu,Fu Qiangang,Li Kezhi. Effect of Monolithic LaB6 on the Ablation Resistance of ZrC/SiC Coating Prepared by Supersonic Plasma Spraying for C/C Composites [J]. J. Mater. Sci. Technol., 2016, 32(10): 996-1002. |
[14] | Nguyen Van Chuc, Cao Thi Thanh, Nguyen Van Tu, Vuong T.Q. Phuong, Pham Viet Thang, Ngo Thi Thanh Tam. A Simple Approach to the Fabrication of Graphene-Carbon Nanotube Hybrid Films on Copper Substrate by Chemical Vapor Deposition [J]. J. Mater. Sci. Technol., 2015, 31(5): 479-483. |
[15] | Lei Liu, Hejun Li, Kui Hao, Xiaohong Shi, Kezhi Li, Chang Ni. Effect of SiC Location on the Ablation of C/C-SiC Composites in Two Heat Fluxes [J]. J. Mater. Sci. Technol., 2015, 31(4): 345-354. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||