J. Mater. Sci. Technol. ›› 2022, Vol. 115: 140-147.DOI: 10.1016/j.jmst.2021.10.044
• Research Article • Previous Articles Next Articles
Heng Maa, Xin Liua, Ning Liua,*(), Yan Zhaoa, Yongguang Zhanga,*(
), Zhumabay Bakenovb, Xin Wangc,*(
)
Received:
2021-06-06
Revised:
2021-10-02
Accepted:
2021-10-17
Published:
2022-07-10
Online:
2022-01-22
Contact:
Ning Liu,Yongguang Zhang,Xin Wang
About author:
wangxin@scnu.edu.cn (X. Wang).Heng Ma, Xin Liu, Ning Liu, Yan Zhao, Yongguang Zhang, Zhumabay Bakenov, Xin Wang. Defect-rich porous tubular graphitic carbon nitride with strong adsorption towards lithium polysulfides for high-performance lithium-sulfur batteries[J]. J. Mater. Sci. Technol., 2022, 115: 140-147.
Fig. 1. (a, b) Optimized configuration of Li2S6 adsorption on TCN and PTCN; (c, d) DOS of TCN and PTCN; (e, f) transition state of Li2S2 decomposition on TCN and PTCN.
Fig. 5. (a) CV curves; (b) cycling performance and (c) charge-discharge profiles at 0.2 C; (d) rate performance and (e) charge-discharge profiles from 0.2-4 C; (f) EIS Nyquist plots; (g) cycling performance at 1 C; (h) cycling performances under raised sulfur loading.
Fig. 6. CV curves at different scan rates of (a) TCN/S and (b) PTCN/S; (c, d) the corresponding relevance between peak currents and scanning rate curves.
Fig. 7. CV curves of symmetric cell with PTCN electrode at (a) 6 mV s-1 for first three cycles and (b) different rates; (c) EIS of TCN and PTCN symmetric cells; Li2S deposition profiles of (d) TCN and (e) PTCN; (f) LSV curves of Li2S oxidization for TCN and PTCN electrodes.
Fig. 8. (a) UV-vis spectra and digital photos (inset) of LiPS solution after adsorption; (b) XPS spectra of pure Li2S6 and PTCN-Li2S6; (c) schematic illustration of adsorption and catalysis for LiPSs on PTCN.
[1] |
J.H. Hou, X.Y. Tu, X.G. Wu, M. Shen, X.Z. Wang, C.Y. Wang, C.B. Cao, H. Peng, G.X. Wang, Chem. Eng. J. 401 (2020) 126141.
DOI URL |
[2] | S. Bai, X. Liu, K. Zhu, S. Wu, H. Zhou, Nat.Energy 1 (2016) 16094. |
[3] |
X. Liu, J.Q. Huang, Q. Zhang, L. Mai, Adv. Mater. 29 (2017) 1601759.
DOI URL |
[4] |
H.D. Liu, Z.L. Chen, H. Man, S.P. Yang, Y. Song, F. Fang, R.C. Che, D.L. Sun, J. Alloy. Compd. 842 (2020) 155764.
DOI URL |
[5] |
Y.F. He, X.D. Zhuang, C.J. Lei, L.C. Lei, Y. Hou, Y.Y. Mai, X.L. Feng, Nano Today 24 (2019) 103-119.
DOI URL |
[6] | J.T. Wang, T.K. Zhao, Z.H. Yang, Y. Chen, Y. Liu, J.X. Wang, P.F. Zhai, W.J. Wu, ACS Appl. Mater. Interfaces 42 (2019) 38654-38662. |
[7] | H. Yang, Y.N. Yang, X. Zhang, Y.P. Li, N.A. Qaisrani, F.X. Zhang, C. Hao, ACS Appl. Mater. Interfaces 35 (2019) 31860-31868. |
[8] | M. Jiang, R.X. Wang, K.L. Wang, S. Gao, J. Han, J. Yan, S.J. Cheng, K. Jiang, Nanoscale 32 (2019) 15156-15165. |
[9] |
Y.G. Zhang, W.L. Qiu, Y. Zhao, Y. Wang, Z. Bakenov, X. Wang, Chem. Eng. J. 375 (2019) 122055.
DOI URL |
[10] |
G.L. Cui, G.R. Li, D. Luo, Y.G. Zhang, Y. Zhao, D.R. Wang, J.Y. Wang, Z. Zhang, X. Wang, Z.W. Chen, Nano Energy 72 (2020) 104685.
DOI URL |
[11] |
J.Y. Li, Y. Hou, X.F. Gao, D.S. Guan, Y.Y. Xie, J.H. Chen, C. Yuan, Nano Energy 16 (2015) 10-18.
DOI URL |
[12] |
J. Xu, F.T. Yu, J.L. Hua, W.Q. Tang, C. Yang, S.Z. Hu, S.L. Zhao, X.S. Zhang, Z. Xin, D.F. Niu, Chem. Eng. J. 392 (2020) 123694.
DOI URL |
[13] |
Y. Hou, J.Y. Li, Z.H. Wen, S.M. Cui, C. Yuan, J.H. Chen, Nano Energy 8 (2014) 157-164.
DOI URL |
[14] |
J. Kibsgaard, Z.B. Chen, B.N. Reinecke, T.F. Jaramillo, Nat. Mater. 11 (2012) 963-969.
DOI PMID |
[15] |
Y. Hou, Y.Y. Li, X.F. Gao, Z.H. Wen, C. Yuan, J.H. Chen, Nanoscale 8 (2016) 8228-8235.
DOI URL |
[16] | H.X. Wang, B. Zhang, X.Q. Zeng, L.J. Yan, J.C. Zheng, M. Ling, Y. Hou, Y.Y. Lu, C.D. Liang, J. Power Sources 15 (2020) 228588. |
[17] | M.M. Dang, M.H. Liu, F. Li, Ionics 4 (2021) 1531-1536. |
[18] | C.Q. Shang, G.R. Li, B.B. Wei, J.Y. Wang, R. Gao, Y. Tian, Q. Chen, Y.G. Zhang, L.L. Shui, G.F. Zhou, Y.G. Hu, Z.W. Chen, X. Wang, Adv. Energy Mater. 3 (2020) 2003020. |
[19] | W.J. Wang, J. Li, Q.W. Jin, Y.Y. Liu, Y.G. Zhang, Y. Zhao, X. Wang, A. Nurpeissova, Z. Bakenov, ACS Appl. Energy Mater. 2 (2021) 1687-1695. |
[20] | Y.G. Zhang, G.R. Li, J.Y. Wang, G.L. Cui, X.L. Wei, L.L. Shui, K. Kempa, G.F. Zhou, X. Wang, Z.W. Chen, Adv. Funct. Mater. 22 (2020) 2001165. |
[21] |
H. Wang, S.A. He, Z. Cui, C.T. Xu, J.Q. Zhu, Q. Liu, G.J. He, W. Luo, R.G. Zhou, Chem. Eng. J. 420 (2021) 129693.
DOI URL |
[22] |
Y. Hu, C. Cheng, T.R. Yan, G.L. Liu, C. Yuan, Y.Y. Yan, Z.H. Gu, P. Zeng, L.R. Zheng, J. Zhang, L. Zhang, Chem. Eng. J. 421 (2021) 129997.
DOI URL |
[23] | Y.Q. Cao, F.F. Lei, Y.L. Li, S.L. Qiu, Y. Wang, W. Zhang, Z.T. Zhang, J. Mater. Chem. A 29 (2021) 16196-16207. |
[24] | S.X. Chen, J.H. Luo, N.Y. Li, X.X. Han, J. Wang, Q. Deng, Z.L. Zeng, S.G. Deng, Energy Storage Mater. 30 (2020) 187-195. |
[25] |
Z.Y. Jia, H.Z. Zhang, Y. Yu, Y.Q. Chen, J.W. Yan, X.F. Li, H.M. Zhang, J. Energy Chem. 43 (2020) 71-77.
DOI URL |
[26] |
M.F. Chen, X.M. Zhao, Y.F. Li, P. Zeng, H. Liu, H. Yu, M. Wu, Z.H. Li, D.S. Shao, C.Q. Miao, G.R. Chen, H.B. Shu, Y. Pei, X.Y. Wang, Chem. Eng. J. 385 (2020) 123905.
DOI URL |
[27] |
M. Luo, Y. Bai, R. Sun, Z.H. Wang, W. Sun, P. Lin, X. Dai, K.N. Sun, Ind. Eng. Chem. Res. 60 (2021) 1231-1240.
DOI URL |
[28] |
X.L. Wang, G.R. Li, M.J. Li, R.P. Liu, H.B. Li, T.Y. Li, M.Z. Sun, Y.R. Deng, M. Feng, Z.W. Chen, J. Energy Chem. 53 (2020) 234-240.
DOI URL |
[29] |
P. Song, Z.L. Chen, Y.X. Chen, Q. Ma, X.H. Xia, H.B. Liu, Electrochim. Acta 363 (2020) 137217.
DOI URL |
[30] | M.J. Du, X.Q. Tian, R. Ran, W. Zhou, K.M. Liao, Z.P. Shao, Energ. Fuel. 9 (2020) 11557-11564. |
[31] |
Z. Meng, Y. Xie, T. Cai, Z. Sun, K. Jiang, W.Q. Han, Electrochim. Acta 210 (2016) 829-836.
DOI URL |
[32] | J.Y. Wang, G.R. Li, D. Luo, Y.G. Zhang, Y. Zhao, G.F. Zhou, L.L. Shui, X. Wang, Z.W. Chen, Adv. Energy Mater. 41 (2020) 2002076. |
[33] |
Z. Fang, N.N. Ma, K. Zhang, K.Y. Xie, C. Shen, J.X. Peng, Y.Y. Dang, W.D. Cheng, D.D. Zheng, L.B. Li, Ionics 25 (2019) 3099-3106.
DOI |
[34] |
W. Liu, C.J. Song, M.P. Kou, Y.Y. Wang, Y. Deng, T. Shimada, L.Q. Ye, Chem. Eng. J. 425 (2021) 130615.
DOI URL |
[35] |
Z.J. Li, Y.Y. Du, K.X. Zhu, A.A. Meng, Q.D. Li, Mater. Lett. 213 (2018) 338-341.
DOI URL |
[36] | S. Majumder, M. Shao, Y.F. Deng, G.H. Chen, J.Power Sources 431 (2019) 93-104. |
[37] |
H.X. Fang, H. Guo, C.G. Niu, C. Liang, D.W. Huang, N. Tang, H.Y. Liu, Y.Y. Yang, L. Li, Chem. Eng. J. 402 (2020) 126185.
DOI URL |
[38] |
W.J. Wang, Z.T. Zeng, G.M. Zeng, C. Zhang, R. Xiao, C.Y. Zhou, W.P. Xiong, Y. Yang, L. Lei, Y. Liu, D.L. Huang, M. Cheng, Y.Y. Yang, Y.K. Fu, H.Z. Luo, Y. Zhou, Chem. Eng. J. 378 (2019) 122132.
DOI URL |
[39] |
Z. Guo, H.B. Cao, Y.X. Wang, Y.B. Xie, J.D. Xiao, J. Yang, Y. Zhang, Chemosphere 201 (2018) 206-213.
DOI URL |
[40] |
Q.H. Shen, N.X. Li, R. Bibi, N. Richard, M.C. Liu, J.C. Zhou, D.W. Jing, Appl. Surf. Sci. 529 (2020) 147104.
DOI URL |
[41] |
Z.H. Li, W.L. Wang, Q. Liu, Z.G. Zhang, X.M. Fang, Mater. Res. Bull. 106 (2018) 152-161.
DOI URL |
[42] |
J.L. Wang, Z. Meng, W.T. Yang, X.F. Yan, R.N. Guo, W.Q. Han, ACS Appl. Mater. Interfaces 11 (2019) 819-827.
DOI URL |
[43] |
C.C. Wang, Y.W. Lin, S.M. Lee, Surf. Coat. Technol. 400 (2020) 126228.
DOI URL |
[44] |
M.M. Zhen, S.Q. Guo, B.X. Shen, ACS Sustain. Chem. Eng. 8 (2020) 13318-13327.
DOI URL |
[45] |
Z.H. Hong, B.A. Shen, Y.L. Chen, B.Z. Lin, B.F. Gao, J. Mater. Chem. A 1 (2013) 11754-11761.
DOI URL |
[46] | D.F. Sun, L. Li, Y. Yu, L. Huang, F.Y. Meng, Q.M. Sun, S.F. Ma, B.S. Xu, J. Colloid Interf. Sci. 15 (2021) 639-648. |
[47] | T.Q. Guo, Y.Z. Song, Z.T. Sun, Y.H. Wu, Y. Xia, Y.Y. Li, J.H. Sun, K. Jiang, S.X. Dou, J.Y. Sun, J. Energy Chem. 392 (2020) 34-42. |
[48] |
J.F. Zhang, G.R. Li, Y.G. Zhang, W. Zhang, X. Wang, Y. Zhao, J.D. Li, Z.W. Chen, Nano Energy 64 (2019) 103905.
DOI URL |
[49] |
D. Luo, G.R. Li, Y.P. Deng, Z. Zhang, Adv. Energy Mater. 9 (2019) 1900228.
DOI URL |
[1] | Riguang Cheng, Yanxun Guan, Yumei Luo, Chenchen Zhang, Sheng Wei, Mengmeng Zhao, Qi Lin, Hao Li, Shiyou Zheng, Federico Rosei, Lixian Sun, Fen Xu, Hongge Pan. Guanine-assisted N-doped ordered mesoporous carbons as efficient capacity decaying suppression materials for lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2022, 101(0): 155-164. |
[2] | Ting He, Jiajia Ru, Yutong Feng, Dapeng Bi, Jiansheng Zhang, Feng Gu, Chi Zhang, Jinhu Yang. Templated spherical coassembly strategy to fabricate MoS2/C hollow spheres with physical/chemical polysulfides trapping for lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2022, 98(0): 136-142. |
[3] | Yuanchang Li, Wenda Li, Xiujuan Yan, Zhenfang Zhou, Xiaosong Guo, Jing Liu, Changming Mao, Zhonghua Zhang, Guicun Li. Terminal sulfur atoms formation via defect engineering strategy to promote the conversion of lithium polysulfides [J]. J. Mater. Sci. Technol., 2022, 103(0): 221-231. |
[4] | Wenjuan Wang, Yan Zhao, Yongguang Zhang, Ning Liu, Zhumabay Bakenov. Nickel embedded porous macrocellular carbon derived from popcorn as sulfur host for high-performance lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2021, 74(0): 69-77. |
[5] | Jing Xu, Zhouping Wang, Yongfa Zhu. Highly efficient visible photocatalytic disinfection and degradation performances of microtubular nanoporous g-C3N4 via hierarchical construction and defects engineering [J]. J. Mater. Sci. Technol., 2020, 49(0): 133-143. |
[6] | Na Li, Fei Chen, Xiangtao Chen, Zhongxu Chen, Yang Qi, Xiaodong Li, Xudong Sun. A bipolar modified separator using TiO2 nanosheets anchored on N-doped carbon scaffold for high-performance Li-S batteries [J]. J. Mater. Sci. Technol., 2020, 55(0): 152-158. |
[7] | Zhenya Luo, Xiao Wang, Weixin Lei, Pengtao Xia, Yong Pan. Confining sulfur in sandwich structure of bamboo charcoal and aluminum fluoride (BC@S@AlF3) as a long cycle performance cathode for Li-S batteries [J]. J. Mater. Sci. Technol., 2020, 55(0): 159-166. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||