J. Mater. Sci. Technol. ›› 2022, Vol. 115: 148-155.DOI: 10.1016/j.jmst.2021.11.029
• Research Article • Previous Articles Next Articles
Xuejiao Zhoua,b,*(), Junwu Wena, Zhenni Wanga, Xiaohua Mab,*(
), Hongjing Wuc,**(
)
Received:
2021-09-20
Revised:
2021-11-01
Accepted:
2021-11-03
Published:
2022-07-10
Online:
2022-01-25
Contact:
Xuejiao Zhou,Xiaohua Ma,Hongjing Wu
About author:
**E-mail addresses: wuhongjing@nwpu.edu.cn (H. Wu).Xuejiao Zhou, Junwu Wen, Zhenni Wang, Xiaohua Ma, Hongjing Wu. Broadband high-performance microwave absorption of the single-layer Ti3C2Tx Mxene[J]. J. Mater. Sci. Technol., 2022, 115: 148-155.
Fig. 1. (a) Schematic illustration of fabrication and structure of SL-Ti3C2Tx MXene. SEM (b), TEM and SAED (c), EDS mapping (d), AFM (e), distribution of lateral sides (f), XRD (g), high-resolution XPS spectra of O 1s and F 1s (h, i), and N2 adsorption-desorption isotherm (j) of SL-Ti3C2Tx MXene.
Fig. 2. Microwave absorption properties of Ti3C2Tx MXene. (a) The reflection coefficient (S11) values. (b) The transmission coefficient (S21) values. (c) The absorption coefficient (A) values. 2D RL values of SL-Ti3C2Tx (d), and ML-Ti3C2Tx (e). (f) Histogram of Ti3C2Tx MXene with optimal thickness, bandwidth, and minimum RL values. (g) Comparison of this work with previously reported pure and Ti3C2Tx MXene-based absorbing materials.
Fig. 3. Real parts (a, d), imaginary parts (b, e) of complex permittivity, and dielectric loss tanδe (c, f) values of SL-Ti3C2Tx and ML-Ti3C2Tx at various filler loadings. Cole-Cole semicircles of SL-Ti3C2Tx-22% (g), SL-Ti3C2Tx-44% (h), and ML-Ti3C2Tx-60% (i).
Fig. 4. Schematic illustration of electromagnetic attenuation mechanism in Ti3C2Tx MXene. (a) FT-IR spectra and (b) conductivity of SL-Ti3C2Tx and ML-Ti3C2Tx.
[1] |
X. Liang, A. Garsuch, L.F. Nazar, Angew. Chem. Int. Ed. 54 (2015) 3907-3911.
DOI PMID |
[2] |
Y. Xie, Y. Dall’Agnese, M. Naguib, Y. Gogotsi, M.W. Barsoum, H.L.L. Zhuang, P.R.C. Kent, ACS Nano 8 (2014) 9606-9615.
DOI PMID |
[3] |
J.W. Fu, Q.L. Xu, J.X. Low, C.J. Jiang, J.G. Yu, Appl. Catal. B 243 (2019) 556-565.
DOI URL |
[4] |
J.R. Ran, G.P. Gao, F.T. Li, T.Y. Ma, A.J. Du, S.Z. Qiao, Nat. Commun. 8 (2017) 13907-13917.
DOI URL |
[5] | S.J. Kim, H.J. Koh, C.E. Ren, O. Kwon, K. Maleski, S.Y. Cho, B. Anasori, C.K. Kim, Y.K. Choi, J. Kim, Y. Gogotsi, H.T. Jung, ACSNano 12 (2018)986-993. |
[6] |
M. Khazaei, M. Arai, T. Sasaki, C.Y. Chung, N.S. Venkataramanan, M. Estili, Y. Sakka, Y. Kawazoe, Adv. Funct. Mater. 23 (2013) 2185-2192.
DOI URL |
[7] |
A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81 (2009) 109-162.
DOI URL |
[8] |
Y.H. Zhou, K. Maleski, B. Anasori, J.O. Thostenson, Y.K. Pang, Y.Y. Feng, K.X. Zeng, C.B. Parker, S. Zauscher, Y. Gogotsi, J.T. Glass, C.Y. Cao, ACS Nano 14 (2014) 3576-3586.
DOI URL |
[9] |
Z.W. Seh, K.D. Fredrickson, B. Anasori, J. Kibsgaard, A.L. Strickler, M.R. Lukatskaya, Y. Gogotsi, T.F. Jaramillo, A. Vojvodic, ACS Energy Lett. 1 (2016) 589-594.
DOI URL |
[10] |
W. Gu, X. Cui, J. Zheng, J. Yu, Y. Zhao, G. Ji, J. Mater. Sci. Technol. 67 (2021) 265-272.
DOI URL |
[11] | Z. Ling, C.E. Ren, M.Q. Zhao, J. Yang, J.M. Giammarco, J.S. Qiu, M.W. Barsoum, Y. Gogotsi, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 16676-16681. |
[12] | M. Kallumottakkal, M.I. Hussein, M.Z. Iqbal, Front. Phys. 8 (2021) 633079-633098. |
[13] |
M.L. Yang, Y. Yuan, Y. Li, X.X. Sun, S.S. Wang, L. Liang, Y.H. Ning, J.J. Li, W.L. Yin, Y.B. Li, ACS Appl. Mater. Interfaces 12 (2020) 33128-33138.
DOI URL |
[14] | M.J. Hu, N.B. Zhang, G.C. Shan, J.F. Gao, J.Z. Liu, R.K.Y. Li, Front. Phys. 13 (2018) 52-90. |
[15] |
H. Zhao, Y. Cheng, Z. Zhang, B. Zhang, C. Pei, F. Fan, G. Ji, Carbon 173 (2021) 501-511.
DOI URL |
[16] | M.K. Han, X.W. Yin, X.L. Li, B. Anasori, L.T. Zhang, L.F. Cheng, Y. Gogotsi, ACS Appl. Mater. Interfaces 9 (2017) 20 038-20 045. |
[17] |
T. Yun, H. Kim, A. Iqbal, Y.S. Cho, G.S. Lee, M.K. Kim, S.J. Kim, D. Kim, Y. Gogotsi, S.O. Kim, C.M. Koo, Adv. Mater. 32 (2020) 1906769-1906778.
DOI URL |
[18] |
Y. Zhang, Y. Huang, T.F. Zhang, H.C. Chang, P.S. Xiao, H.H. Chen, Z.Y. Huang, Y.S. Chen, Adv. Mater. 27 (2015) 2049-2053.
DOI URL |
[19] |
Z. Xiang, J. Xiong, B.W. Deng, E. Cui, L.Z. Yu, Q.W. Zeng, K. Pei, R.C. Che, W. Lu, J. Mater. Chem. C 8 (2020) 2123-2134.
DOI URL |
[20] |
M.K. Han, X.W. Yin, L. Kong, M. Li, W.Y. Duan, L.T. Zhang, L.F. Cheng, J. Mater. Chem. A 2 (2014) 16403-16409.
DOI URL |
[21] |
H.L. Yu, T.S. Wang, B. Wen, M.M. Lu, Z. Xu, C.L. Zhu, Y.J. Chen, X.Y. Xue, C.W. Sun, M.S. Cao, Chem. Mater. 22 (2012) 21679-21685.
DOI URL |
[22] |
M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, H. Zhang, Nat. Chem. 5 (2013) 263-275.
DOI PMID |
[23] |
M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier, P.L. Taberna, M. Naguib, P. Simon, M.W. Barsoum, Y. Gogotsi, Science 341 (2013) 1502-1505.
DOI PMID |
[24] |
B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler, L. Hultman, P.R.C. Kent, Y. Gogotsi, M.W. Barsoum, ACS Nano 9 (2015) 9507-9516.
DOI PMID |
[25] |
A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon, J. Hong, H. Kim, D. Kim, Y. Gogotsi, C.M. Koo, Science 369(2020)446-450.
DOI URL |
[26] |
M.S. Cao, Y.Z. Cai, P. He, J.C. Shu, W.Q. Cao, J. Yuan, Chem. Eng. J. 359 (2019) 1265-1302.
DOI URL |
[27] |
Y.C. Qing, W.C. Zhou, F. Luo, D.M. Zhu, Ceram. Int. 42 (2016) 16412-16416.
DOI URL |
[28] |
G.Z. Cui, X. Zheng, X.L. Lv, Q. Jia, W. Xie, G.X. Gu, Ceram. Int. 45 (2019) 23600-23610.
DOI URL |
[29] | G.F. Xu, X.X. Wang, S.D. Gong, S. Wei, J.Q. Liu, Y.H. Xu, Nat. Nanotechnol. 29 (2018) 355201-355212. |
[30] |
Z.H. Lin, J. Liu, W. Peng, Y.Y. Zhu, Y. Zhao, K. Jiang, M. Peng, Y.W. Tan, ACS Nano 14 (2020) 2109-2117.
DOI URL |
[31] |
L.Y. Liang, Q.M. Li, X. Yan, Y.Z. Feng, Y.M. Wang, H.B. Zhang, X.P. Zhou, C.T. Liu, C.Y. Shen, X.L. Xie, ACS Nano 15 (2021) 6622-6632.
DOI URL |
[32] | M. Qin, L.M. Zhang, X.R. Zhao, H.J. Wu, Adv. Sci. 8 (2021) 20 04640-20 04654. |
[33] |
Y.L. Zhou, N. Wang, J. Muhammad, D.X. Wang, Y.P. Duan, X.F. Zhang, X.L. Dong, Z.D. Zhang, Carbon. 148 (2019) 204-213.
DOI URL |
[34] | H. Zhang, L. Yang, P.G. Zhang, C.J. Lu, D.W. Sha, B.Z. Yan, W. He, M. Zhou, W. Zhang, L. Pan, Z.M. Sun, Adv. Mater. 33 (2021) 20 08447-20 08459. |
[35] |
S.Y. Shen, T. Ke, K. Rajavel, K. Yang, D.H. Lin, Small 16 (2020) 2002433-2002447.
DOI URL |
[36] |
A. Sarycheva, Y. Gogotsi, Chem. Mater. 32 (2020) 3480-3488.
DOI URL |
[37] |
Y.X. Li, X.Y. Chen, Q. Wei, W.W. Liu, Y.H. Zhang, G.W. Qin, Z. Shi, X.F. Zhang, Sci. Bull. 65 (2020) 623-630.
DOI URL |
[38] |
X. Zhou, J. Wen, Z. Wang, X. Ma, H. Wu, J. Colloid Interface Sci. 602 (2021) 834-845.
DOI URL |
[39] |
M. Qin, L.M. Zhang, X.R. Zhao, H.J. Wu, Adv. Funct. Mater. 31 (2021) 2103436-2103446.
DOI URL |
[40] |
B. Quan, W. Gu, J. Sheng, X. Lv, Y. Mao, L. Liu, X. Huang, Z. Tian, G. Ji, Nano Res. 14 (2020) 1495-1501.
DOI URL |
[41] |
J.W. Wen, X.X. Li, G. Chen, Z.N. Wang, X.J. Zhou, H.J. Wu, J. Colloid Interface Sci. 594 (2021) 424-434.
DOI URL |
[42] |
S.B. Tu, Q. Jiang, X.X. Zhang, H.N. Alshareef, ACS Nano 12 (2018) 3369-3377.
DOI URL |
[43] |
Y.C. Du, W.W. Liu, R. Qiang, Y. Wang, X.J. Han, J. Ma, P. Xu, ACS Appl. Mater. Interfaces 6 (2014) 12997-13006.
DOI URL |
[44] |
H.L. Lv, Z.H. Yang, P.L. Wang, G.B. Ji, J.Z. Song, L.R. Zheng, H.B. Zeng, Z.C.J. Xu, Adv. Mater. 30 (2018) 1706343-1706351.
DOI URL |
[45] |
X. Tian, F.B. Meng, F.C. Meng, X.N. Chen, Y.F. Guo, Y. Wang, W.J. Zhu, Z.W. Zhou, ACS Appl. Mater. Interfaces 9 (2017) 15711-15718.
DOI URL |
[46] |
Z. Ma, Y. Zhang, C.T. Cao, J. Yuan, Q.F. Liu, J.B. Wang, Phys. B Condens. Matter 406 (2011) 4620-4624.
DOI URL |
[47] |
Y.F. Pan, G.S. Wang, L. Liu, L. Guo, S.H. Yu, Nano Res 10 (2017) 284-294.
DOI URL |
[48] |
J.L. Liu, L.M. Zhang, D.Y. Zang, H.J. Wu, Adv. Funct. Mater. 31 (2021) 2105018-2105029.
DOI URL |
[1] | Tong Gao, Zhengyu Zhang, Yixing Li, Yujuan Song, Huawei Rong, Xuefeng Zhang. Solid-state reaction induced defects in multi-walled carbon nanotubes for improving microwave absorption properties [J]. J. Mater. Sci. Technol., 2022, 108(0): 37-45. |
[2] | Jianping Yang, Linwen Jiang, Zhonghao Liu, Zhuo Tang, Anhua Wu. Multifunctional interstitial-carbon-doped FeCoNiCu high entropy alloys with excellent electromagnetic-wave absorption performance [J]. J. Mater. Sci. Technol., 2022, 113(0): 61-70. |
[3] | Zhuguang Nie, Yang Feng, Qing Zhu, YingXia Li, ping Luo, Lan Ma, Jie Su, Xingman Hu, Rumin Wang, Shuhua Qi. Layered-structure N-doped expanded-graphite/boron nitride composites towards high performance of microwave absorption [J]. J. Mater. Sci. Technol., 2022, 113(0): 71-81. |
[4] | Fuxi Peng, Mingfeng Dai, Zhenyu Wang, Yifan Guo, Zuowan Zhou. Progress in graphene-based magnetic hybrids towards highly efficiency for microwave absorption [J]. J. Mater. Sci. Technol., 2022, 106(0): 147-161. |
[5] | Bin Li, Fenglong Wang, Kejun Wang, Jing Qiao, Dongmei Xu, Yunfei Yang, Xue Zhang, Longfei Lyu, Wei Liu, Jiurong Liu. Metal sulfides based composites as promising efficient microwave absorption materials: A review [J]. J. Mater. Sci. Technol., 2022, 104(0): 244-268. |
[6] | Jie Wen, Zihao Song, Jiabao Ding, Feihong Wang, Hongpeng Li, Jinyong Xu, Chao Zhang. MXene-derived TiO2 nanosheets decorated with Ag nanoparticles for highly sensitive detection of ammonia at room temperature [J]. J. Mater. Sci. Technol., 2022, 114(0): 233-239. |
[7] | Jijun Wang, Songlin Yu, Qingqing Wu, Yan Li, Fangyuan Li, Xiao Zhou, Yuhua Chen, Bingzhen Li, Panbo Liu. Heterogeneous junctions of magnetic Ni core@binary dielectric shells toward high-efficiency microwave attenuation [J]. J. Mater. Sci. Technol., 2022, 115(0): 71-80. |
[8] | Ning Li, Jingrui Han, Kaili Yao, Mei Han, Zumin Wang, Yongchang Liu, Lihua Liu, Hongyan Liang. Synergistic phosphorized NiFeCo and MXene interaction inspired the formation of high-valence metal sites for efficient oxygen evolution [J]. J. Mater. Sci. Technol., 2022, 106(0): 90-97. |
[9] | Biao Zhao, Yang Li, Qingwen Zeng, Bingbing Fan, Lei Wang, Rui Zhang, Renchao Che. Growth of magnetic metals on carbon microspheres with synergetic dissipation abilities to broaden microwave absorption [J]. J. Mater. Sci. Technol., 2022, 107(0): 100-110. |
[10] | Wei Luo, Yi Liu, Chuangye Wang, Dan Zhao, Xiaoyan Yuan, Jianfeng Zhu, Lei Wang, Shouwu Guo. Sacrificial template synthesis of (V0.8Ti0.1Cr0.1)2AlC and carbon fiber@(V0.8Ti0.1Cr0.1)2AlC microrods for efficient microwave absorption [J]. J. Mater. Sci. Technol., 2022, 111(0): 236-244. |
[11] | Yue-Yi Wang, , Wen-Jin Sun, Kun Dai, Ding-Xiang Yan, Zhong-Ming Li. Highly enhanced microwave absorption for carbon nanotube/barium ferrite composite with ultra-low carbon nanotube loading [J]. J. Mater. Sci. Technol., 2022, 102(0): 115-122. |
[12] | Yawei Zhang, Shuangshuang Li, Xinwei Tang, Wei Fan, Qianqian Lan, Le Li, Piming Ma, Weifu Dong, Zicheng Wang, Tianxi Liu. Ultralight and ordered lamellar polyimide-based graphene foams with efficient broadband electromagnetic absorption [J]. J. Mater. Sci. Technol., 2022, 102(0): 97-104. |
[13] | Xiankai Fu, Bo Yang, Wanqi Chen, Zongbin Li, Haile Yan, Xiang Zhao, Liang Zuo. Electromagnetic wave absorption performance of Ti2O3 and vacancy enhancement effective bandwidth [J]. J. Mater. Sci. Technol., 2021, 76(0): 166-173. |
[14] | Kun Qian, Qifan Li, Alexander Sokolov, Chengju Yu, Piotr Kulik, Ogheneyunume Fitchorova, Yajie Chen, Chins Chinnasamy, Vincent G. Harris. Electromagnetic shielding effectiveness of amorphous metallic spheroidal- and flake-based magnetodielectric composites [J]. J. Mater. Sci. Technol., 2021, 83(0): 256-263. |
[15] | Baolei Wang, Qian Wu, Yonggang Fu, Tong Liu. A review on carbon/magnetic metal composites for microwave absorption [J]. J. Mater. Sci. Technol., 2021, 86(0): 91-109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||