J. Mater. Sci. Technol. ›› 2022, Vol. 115: 156-165.DOI: 10.1016/j.jmst.2021.11.034
• Research Article • Previous Articles Next Articles
Chuanliang Weia, Liwen Tana, Yuchan Zhanga, Huiyu Jianga, Baojuan Xib, Shenglin Xiongb, Jinkui Fenga,*()
Received:
2021-11-03
Revised:
2021-11-18
Accepted:
2021-11-23
Published:
2022-07-10
Online:
2022-01-26
Contact:
Jinkui Feng
About author:
*E-mail address: jinkui@sdu.edu.cn (J. Feng).Chuanliang Wei, Liwen Tan, Yuchan Zhang, Huiyu Jiang, Baojuan Xi, Shenglin Xiong, Jinkui Feng. Room-temperature liquid metal engineered iron current collector enables stable and dendrite-free sodium metal batteries in carbonate electrolytes[J]. J. Mater. Sci. Technol., 2022, 115: 156-165.
Fig. 1. (a) Schematic showing the fabrication process and inherent advantages of Ga-SSF. (b) A photograph of CF. (c) A photograph of SSF. (d) A photograph of SSF with a drop of liquid-state Ga. (e) A photograph of Ga-SSF. The diameter of these slices was 1.6 cm. (f-h) Top-view SEM images of CF, SSF, and Ga-SSF, respectively. (i) Cross-sectional SEM image of Ga-SSF.
Fig. 2. (a) XRD patterns of metallic Ga, SSF, and Ga-SSF. (b) XRD patterns of SSF after immersing in Li-ion, Na-ion, K-ion, Mg-ion electrolytes, and deionized water for 30 days. (c-f) SEM images of SSF after immersing in Li-ion, Na-ion, K-ion electrolytes, and deionized water for 30 days, respectively. (g) XPS full spectra of SSF and Ga-SSF. (h) High-resolution XPS spectra of Ga2p in Ga-SSF. (i) Contact angel of liquid electrolyte (1 M NaPF6 in EC/DEC with 5% FEC) on CF, SSF, and Ga-SSF.
Fig. 3. (a-c) The initial CV curves of Ga-SSF, CF, and SSF at 0.1 mV s-1 in -0.1 to 3 V, respectively. (d) XRD patterns after depositing 0.2 mAh cm-2 of Na on Ga-SSF at 0.1 mA cm-2. (e) Voltage-capacity curves of CF, SSF, and Ga-SSF. (f) The nucleation overpotential of Na on CF, SSF, and Ga-SSF. (g, h) Coulombic efficiency of CF, SSF, and Ga-SSF. (i) The 40th plating/stripping curves of Na on CF, SSF, and Ga-SSF in (h). (j) Voltage-time curves of symmetric cells for CF, SSF, and Ga-SSF at 0.5 mA cm-2. (k) An enlarged image at a certain time range in (j).
Fig. 4. Low-magnification SEM images. (a-c) Top-view SEM images after depositing 0.5, 1, and 2 mA h cm-2 of Na on CF at 0.2 mA cm-2, respectively. (d-f) Top-view SEM images after depositing 0.5, 1, and 2 mA h cm-2 of Na on SSF at 0.2 mA cm-2, respectively. (g-i) Top-view SEM images after depositing 0.5, 1, and 2 mA h cm-2 of Na on Ga-SSF at 0.2 mA cm-2, respectively.
Fig. 5. High-magnification SEM images. (a-c) Top-view SEM images after depositing 0.5, 1, and 2 mAh cm-2 of Na on CF at 0.2 mA cm-2, respectively. (d-f) Top-view SEM images after depositing 0.5, 1, and 2 mAh cm-2 of Na on SSF at 0.2 mA cm-2, respectively. (g-i) Top-view SEM images after depositing 0.5, 1, and 2 mAh cm-2 of Na on Ga-SSF at 0.2 mA cm-2, respectively.
Fig. 6. (a-c) Cross-sectional SEM images after depositing 2 mAh cm-2 of Na on CF, SSF, and Ga-SSF at 0.2 mA cm-2, respectively. (d-f) Enlarged SEM images in (a-c). (g-i) Nyquist plots after depositing 2 mAh cm-2 of Na on CF, SSF, and Ga-SSF at 0.2 mA cm-2, respectively.
Fig. 7. (a) Schematic showing the structure of Na metal full cells. (b) The rate capability of NVP-CFNa, NVP-SSFNa, and NVP-Ga-SSFNa full cells at different rates. (c-e) Charge-discharge curves of full cells at different rates. (f) Cycling performance of full cells at 2 C.
[1] |
M. Armand, J.M. Tarascon, Nature 451 (2008) 652-657.
DOI URL |
[2] |
B. Dunn, H. Kamath, J.M. Tarascon, Science 334 (2011) 928-935.
DOI URL |
[3] |
Y.X. Tang, Y.Y. Zhang, W.L. Li, B. Ma, X.D. Chen, Chem. Soc. Rev. 44 (2015) 5926-5940.
DOI URL |
[4] |
M. Winter, B. Barnett, K. Xu, Chem. Rev. 118 (2018) 11433-11456.
DOI URL |
[5] |
M. Li, J. Lu, Z.W. Chen, K. Amine, Adv. Mater. 30 (2018) 1800561.
DOI URL |
[6] |
K. Xu, Energy Environ. Mater. 2 (2019) 229-233.
DOI URL |
[7] |
J.Y. Hwang, S.T. Myung, Y.K. Sun, Chem. Soc. Rev. 46 (2017) 3529-3614.
DOI URL |
[8] |
L.T. Peiró, G.V. Méndez, R.U. Ayres, JOM 65 (2013) 986-996.
DOI URL |
[9] |
E. Fan, L. Li, Z.P. Wang, J. Lin, Y.X. Huang, Y. Yao, R.J. Chen, F. Wu, Chem. Rev. 120 (2020) 7020-7063.
DOI URL |
[10] | C.L. Wei, Y. Tao, H.F. Fei, Y.L. An, Y. Tian, J.K. Feng, Y.T. Qian, Energy Storage Mater 30 (2020) 206-227. |
[11] |
Y.Z. Fang, R. Hu, K. Zhu, K. Ye, J. Yan, G.L. Wang, D.X. Cao, Adv. Funct. Mater. 30 (2020) 2005663.
DOI URL |
[12] |
R. Hu, Y.Z. Fang, X.Y. Liu, K. Zhu, D.X. Cao, J. Yi, G.L. Wang, Chem. Res. Chin. Univ. 37 (2021) 311-317.
DOI URL |
[13] |
C.L. Wei, L.W. Tan, Y.C. Zhang, S.L. Xiong, J.K. Feng, ChemPhysMater (2021), doi: 10.1016/j.chphma.2021.09.003.
DOI |
[14] |
T. Jin, Q.Q. Han, L.F. Jiao, Adv. Mater. 32 (2020) 1806304.
DOI URL |
[15] |
F. Li, Z.X. Wei, A. Manthiram, Y.Z. Feng, J.M. Ma, L.Q. Mai, J. Mater. Chem. A 7 (2019) 9406-9431.
DOI URL |
[16] |
C.L. Zhao, Y.X. Lu, L.Q. Chen, Y.S. Hu, InfoMat 2 (2020) 126-138.
DOI URL |
[17] |
C. Delmas, Adv. Energy Mater. 8 (2018) 1703137.
DOI URL |
[18] |
X.J. Pu, H.M. Wang, D. Zhao, H.X. Yang, X.P. Ai, S.N. Cao, Z.X. Chen, Y.L. Cao, Small 15 (2019) 1805427.
DOI URL |
[19] |
L. Li, Y. Zheng, S.L. Zhang, J.P. Yang, Z.P. Shao, Z.P. Guo, Energy Environ. Sci. 11 (2018) 2310-2340.
DOI URL |
[20] | C.L. Zhao, Q.D. Wang, Z.P. Yao, J.L. Wang, B. Sánchez-Lengeling, F.X. Ding, X.G. Qi, Y.X. Lu, X.D. Bai, B.H. Li, H. Li, A. Aspuru-Guzik, X.J. Huang, C. Delmas, M. Wagemaker, L.Q. Chen, Y.S. Hu, Science 370 (2020) 708-711. |
[21] |
Y.J. Fang, X.Y. Yu, X.W. Lou, Matter 1 (2019) 90-114.
DOI URL |
[22] |
Y. Sun, S.H. Guo, H.S. Zhou, Adv. Energy Mater. 9 (2019) 1800212.
DOI URL |
[23] | Y.Z. Fang, Y.Y. Zhang, C.X. Miao, K. Zhu, Y. Chen, F. Du, J.L. Yin, K. Ye, K. Cheng, J. Yan, G.L. Wang, D.X. Cao, Nano-Micro Lett 12 (2020) 128. |
[24] |
T. Perveen, M. Siddiq, N. Shahzad, R. Ihsan, A. Ahmad, M.I. Shahzad, Renew. Sust. Energ. Rev. 119 (2020) 109549.
DOI URL |
[25] |
H. Liu, X.B. Cheng, Z.H. Jin, R. Zhang, G.X. Wang, L.Q. Chen, Q.B. Liu, J.Q. Huang, Q. Zhang, EnergyChem 1 (2019) 100003.
DOI URL |
[26] | X.Y. Zheng, C. Bommierc, W. Luo, L.H. Jiang, Y.N. Hao, Y.H. Huang, Energy Stor-age Mater 16 (2019) 6-23. |
[27] |
J.W. Xiang, L.Y. Yang, L.X. Yuan, K. Yuan, Y. Zhang, Y.Y. Huang, J. Lin, F. Pan, Y.H. Huang, Joule 3 (2019) 2334-2363.
DOI URL |
[28] |
Y. Zhao, K.R. Adair, X.L. Sun, Energy Environ. Sci. 11 (2018) 2673-2695.
DOI URL |
[29] |
W. Luo, F. Shen, C. Bommier, H.L. Zhu, X.L. Ji, L.B. Hu, Accounts Chem. Res. 49 (2016) 231-240.
DOI URL |
[30] |
A.Y.S. Eng, V. Kumar, Y.W. Zhang, J.M. Luo, W.Y. Wang, Y.M. Sun, W.Y. Li, Z.W. Seh, Adv. Energy Mater. 11 (2021) 2003493.
DOI URL |
[31] |
C.L. Wei, Y. Tao, Y.L. An, Y. Tian, Y.C. Zhang, J.K. Feng, Y.T. Qian, Adv. Funct. Mater. 30 (2020) 2004613.
DOI URL |
[32] |
C.L. Wei, L.W. Tan, Y.C. Zhang, K. Zhang, B.J. Xi, S.L. Xiong, J.K. Feng, Y.T. Qian, ACS Nano 15 (2021) 12741-12767.
DOI URL |
[33] |
Y.Z. Fang, R.Q. Lian, H.P. Li, Y. Zhang, Z. Gong, K. Zhu, K. Ye, J. Yan, G.L. Wang, Y. Gao, Y.J. Wei, D.X. Cao, ACS Nano 14 (2020) 8744-8753.
DOI URL |
[34] |
B. Lee, E. Paek, D. Mitlin, S.W. Lee, Chem. Rev. 119 (2019) 5416-5460.
DOI |
[35] |
W. Luo, C.F. Lin, O. Zhao, M. Noked, Y. Zhang, G.W. Rubloff, L.B. Hu, Adv. Energy Mater. 7 (2017) 1601526.
DOI URL |
[36] |
S. Liu, S. Tang, X.Y. Zhang, A.X. Wang, Q.H. Yang, J.Y. Luo, Nano Lett 17 (2017) 5862-5868.
DOI URL |
[37] |
Z.P. Li, K.J. Zhu, P. Liu, L.F. Jiao, Adv. Energy Mater. 12 (2022) 2100359.
DOI URL |
[38] |
C.X. Chu, R. Li, F.P. Cai, Z.C. Bai, Y.X. Wang, X. Xu, N.N. Wang, J. Yang, S.X. Dou, Energy Environ. Sci. 14 (2021) 4318-4340.
DOI URL |
[39] | C.B. Soni, V. Kumar, Z.W. Seh, Batteries Supercap 5 (2021) e202100207. |
[40] |
H.Z. Tian, Z.W. Seh, K. Yan, Z.h. Fu, P. Tang, Y.Y. Lu, R.F. Zhang, D. Legut, Y. Cui, Q.F. Zhang, Adv. Energy Mater. 7 (2017) 1602528.
DOI URL |
[41] |
X. Chen, Y.K. Bai, X. Shen, H.J. Peng, Q. Zhang, J. Energy Chem. 51 (2020) 1-6.
DOI URL |
[42] |
S. Tang, Z. Qiu, X.Y. Wang, Y. Gu, X.G. Zhang, W.W. Wang, J.W. Yan, M.S. Zheng, Q.F. Dong, B.W. Mao, Nano Energy 48 (2018) 101-106.
DOI URL |
[43] |
L. Ye, M. Liao, T.C. Zhao, H. Sun, Y. Zhao, X.M. Sun, B.J. Wang, H.S. Peng, Angew. Chem. Int. Edit. 58 (2019) 17054-17060.
DOI URL |
[44] |
C.L. Wei, H.F. Fei, Y. Tian, Y.L. An, G.F. Zeng, J.K. Feng, Y.T. Qian, Small 15 (2019) 1903214.
DOI URL |
[45] |
S. Chen, H.Z. Wang, R.Q. Zhao, W. Rao, J. Liu, Matter 2 (2020) 1446-1480.
DOI URL |
[46] | C.L. Wei, L.W. Tan, Y. Tao, Y.L. An, Y. Tian, H.Y. Jiang, J.K. Feng, Y.T. Qian, Energy Storage Mater 34 (2021) 12-21. |
[47] |
C.L. Wei, H.F. Fei, Y.L. An, Y. Tao, J.K. Feng, Y.T. Qian, J. Mater. Chem. A 7 (2019) 18861-18870.
DOI URL |
[48] | C.L. Wei, H.F. Fei, Y. Tian, Y.L. An, H.H. Guo, J.K. Feng, Y.T. Qian, Energy Storage Mater 26 (2020) 223-233. |
[49] |
C. Liu, Z. Luo, W.T. Deng, W.F. Wei, L.B. Chen, A.Q. Pan, J.M. Ma, C.W. Wang, L.M. Zhu, L.L. Xie, X.Y. Cao, J.G. Hu, G.Q. Zou, H.S. Hou, X.B. Ji, ACS Energy Lett 6 (2021) 675-683.
DOI URL |
[50] |
H. Jia, Z.Q. Wang, M. Dirican, S. Qiu, C.Y. Chan, S.H. Fu, B. Fei, X.W. Zhang, J. Mater. Chem. A 9 (2021) 5597-5605.
DOI URL |
[51] |
A. Irshad, D. Mitra, A. Sundar Rajan, P. Trinh, M. Balasubramanian, S.R. Narayanan, J. Electrochem. Soc. 167 (2020) 020543.
DOI URL |
[52] |
Y. Zhang, C.W. Wang, G. Pastel, Y.D. Kuang, H. Xie, Y.J. Li, B.Y. Liu, W. Luo, C.J. Chen, L.B. Hu, Adv. Energy Mater. 8 (2018) 1800635.
DOI URL |
[53] |
K. Kalantar-Zadeh, J. Tang, T. Daeneke, A.P. O’Mullane, L.A. Stewart, J. Liu, C. Majidi, R.S. Ruoff, P.S. Weiss, M.D. Dickey, ACS Nano 13 (2019) 7388-7395.
DOI PMID |
[54] |
Y.G. Deng, Y. Jiang, J. Liu, Appl. Therm. Eng. 193 (2021) 117021.
DOI URL |
[55] |
Z.B. Wang, Y. Wang, H. Gao, J.Z. Niu, J. Zhang, Z.Q. Peng, Z.H. Zhang, Nanoscale Horiz 3 (2018) 408-416.
DOI URL |
[56] |
X.Y. Wu, A. Markir, Y.K. Xu, C. Zhang, D.P. Leonard, W. Shin, X.L. Ji, Adv. Funct. Mater. 29 (2019) 1900911.
DOI URL |
[57] |
Y.H. Wen, L. Shao, P.C. Zhao, B.Y. Wang, G.P. Cao, Y.S. Yang, J. Mater. Chem. A 5 (2017) 15752-15758.
DOI URL |
[58] |
H.M. Wang, D.Y.W. Yu, Electrochim. Acta 298 (2019) 186-193.
DOI URL |
[59] |
J. Wang, C.O. Too, D. Zhou, G.G. Wallace, J. Power Sources 140 (2005) 162-167.
DOI URL |
[60] |
M.J. Regan, H. Tostmann, P.S. Pershan, Phys. Rev. B 55 (1997) 10786-10790.
DOI URL |
[61] |
X.L. Guo, Y. Ding, L.G. Xue, L.Y. Zhang, C.K. Zhang, J.B. Goodenough, G.H. Yu, Adv. Funct. Mater. 28 (2018) 1804649.
DOI URL |
[62] |
P. Wang, M. Liu, F.J. Mo, Z.Y. Long, F. Fang, D.L. Sun, Y.N. Zhou, Y. Song, Nanoscale 11 (2019) 3208-3215.
DOI PMID |
[63] | V. Kumar, Y. Wang, A.Y.S. Eng, M.F. Ng, Z.W. Seh, Cell Rep. Phys. Sci. 1 (2020) 10 0 044. |
[64] |
Z.W. Seh, J. Sun, Y.M. Sun, Y. Cui, ACS Cent. Sci. 1 (2015) 449-455.
DOI URL |
[65] | V. Kumar, A.Y.S. Eng, Y. Wang, D. Nguyen, M. Ng, Z.W. Seh, Energy Storage Mater. 29 (2020) 1-8. |
[66] |
C.L. Wei, Y.S. Wang, Y.C. Zhang, L.W. Tan, Y. Qian, Y. Tao, S.L. Xiong, J.K. Feng, Nano Res. 14 (2021) 3576-3584.
DOI URL |
[67] |
C.L. Wei, H.F. Fei, Y.L. An, Y.C. Zhang, J.K. Feng, Electrochim. Acta 309 (2019) 362-370.
DOI URL |
[68] |
C.L. Wei, H.F. Fei, Y. Tian, Y.L. An, Y. Tao, Y. Li, J.K. Feng, Chin. Chem. Lett. 31 (2020) 980-983.
DOI URL |
[69] | C.L. Wei, Y.C. Zhang, Y. Tian, L.W. Tan, Y.L. An, Y. Qian, B.J. Xi, S.L. Xiong, J.K. Feng, Y.T. Qian, Energy Storage Mater. 38 (2021) 157-189. |
[1] | Xiaoru Liu, Hao Feng, Jing Wang, Xuefei Chen, Ping Jiang, Fuping Yuan, Huabing Li, En Ma, Xiaolei Wu. Mechanical property comparisons between CrCoNi medium-entropy alloy and 316 stainless steels [J]. J. Mater. Sci. Technol., 2022, 108(0): 256-269. |
[2] | Shucai Zhang, Jiangtao Yu, Huabing Li, Zhouhua Jiang, Yifeng Geng, Hao Feng, Binbin Zhang, Hongchun Zhu. Refinement mechanism of cerium addition on solidification structure and sigma phase of super austenitic stainless steel S32654 [J]. J. Mater. Sci. Technol., 2022, 102(0): 105-114. |
[3] | Jinlong Zhao, Chunguang Yang, Ke Yang. Novel Cu-bearing stainless steel: A promising food preservation material [J]. J. Mater. Sci. Technol., 2022, 113(0): 246-252. |
[4] | R. Silva, S. Vacchi G., L. Kugelmeier C., G.R. Santos I., A. Mendes Filho A., C.C. Magalhães D., R.M. Afonso C., L. Sordi V., A.D. Rovere C.. New insights into the hardening and pitting corrosion mechanisms of thermally aged duplex stainless steel at 475 °C: A comparative study between 2205 and 2101 steels [J]. J. Mater. Sci. Technol., 2022, 98(0): 123-135. |
[5] | Luqing Cui, Dunyong Deng, Fuqing Jiang, Ru Lin Peng, Tongzheng Xin, Reza Taherzadeh Mousavian, Zhiqing Yang, Johan Moverare. Superior low cycle fatigue property from cell structures in additively manufactured 316L stainless steel [J]. J. Mater. Sci. Technol., 2022, 111(0): 268-278. |
[6] | Jiangtao Yu, Shucai Zhang, Huabing Li, Zhouhua Jiang, Hao Feng, Panpan Xu, Peide Han. Influence mechanism of boron segregation on the microstructure evolution and hot ductility of super austenitic stainless steel S32654 [J]. J. Mater. Sci. Technol., 2022, 112(0): 184-194. |
[7] | Xiaodong Lin, Qunjia Peng, Yaolei Han, En-Hou Han, Wei Ke. Effect of thermal ageing and dissolved gas on corrosion of 308L stainless steel weld metal in simulated PWR primary water [J]. J. Mater. Sci. Technol., 2022, 96(0): 308-324. |
[8] | Qiyu Wang, Shenghu Chen, Xinliang Lv, Haichang Jiang, Lijian Rong. Role of δ-ferrite in fatigue crack growth of AISI 316 austenitic stainless steel [J]. J. Mater. Sci. Technol., 2022, 114(0): 7-15. |
[9] | Shucai Zhang, Huabing Li, Zhouhua Jiang, Hao Feng, Zhejian Wen, Junyu Ren, Peide Han. Unveiling the mechanism of yttrium significantly improving high-temperature oxidation resistance of super-austenitic stainless steel S32654 [J]. J. Mater. Sci. Technol., 2022, 115(0): 103-114. |
[10] | M.C. Niu, K. Yang, J.H. Luan, W. Wang, Z.B. Jiao. Cu-assisted austenite reversion and enhanced TRIP effect in maraging stainless steels [J]. J. Mater. Sci. Technol., 2022, 104(0): 52-58. |
[11] | S.-H. Joo, Y.B. Jeong, T. Wada, I.V. Okulov, H. Kato. Inhomogeneous dealloying kinetics along grain boundaries during liquid metal dealloying [J]. J. Mater. Sci. Technol., 2022, 106(0): 41-48. |
[12] | Yanxin Qiao, Xinyi Wang, Lanlan Yang, Xiaojing Wang, Jian Chen, Zhengbin Wang, Huiling Zhou, Jiasheng Zou, Fuhui Wang. Effect of aging treatment on microstructure and corrosion behavior of a Fe-18Cr-15Mn-0.66N stainless steel [J]. J. Mater. Sci. Technol., 2022, 107(0): 197-206. |
[13] | Yoon Hwa, Christopher S. Kumai, Thomas M. Devine, Nancy Yang, Joshua K. Yee, Ryan Hardwick, Kai Burgmann. Microstructural banding of directed energy deposition-additively manufactured 316L stainless steel [J]. J. Mater. Sci. Technol., 2021, 69(0): 96-105. |
[14] | Bright O. Okonkwo, Hongliang Ming, Jianqiu Wang, En-Hou Han, Ehsan Rahimi, Ali Davoodi, Saman Hosseinpour. A new method to determine the synergistic effects of area ratio and microstructure on the galvanic corrosion of LAS A508/309 L/308 L SS dissimilar metals weld [J]. J. Mater. Sci. Technol., 2021, 78(0): 38-50. |
[15] | Xinchang Zhang, Tan Pan, Yitao Chen, Lan Li, Yunlu Zhang, Frank Liou. Additive manufacturing of copper-stainless steel hybrid components using laser-aided directed energy deposition [J]. J. Mater. Sci. Technol., 2021, 80(0): 100-116. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||