J. Mater. Sci. Technol. ›› 2022, Vol. 106: 41-48.DOI: 10.1016/j.jmst.2021.07.023
• Research Article • Previous Articles Next Articles
S.-H. Jooa,b,*(), Y.B. Jeongb, T. Wadab, I.V. Okulovb,c,d,e, H. Katob
Received:
2021-04-11
Revised:
2021-06-18
Accepted:
2021-07-06
Published:
2022-04-20
Online:
2021-09-24
Contact:
S.-H. Joo
About author:
*E-mail address: jjsh83@dankook.ac.kr (S.-H. Joo).S.-H. Joo, Y.B. Jeong, T. Wada, I.V. Okulov, H. Kato. Inhomogeneous dealloying kinetics along grain boundaries during liquid metal dealloying[J]. J. Mater. Sci. Technol., 2022, 106: 41-48.
Fig. 1. FE-SEM images of LMD reaction layer processed at various temperatures for 6 min. (a-c) the Fe50Ni50+Mg and (d-f) (FeCo)50Ni50+Mg LMD systems at (a, d) 600 °C, (b, e) 700 °C, and (c, f) 800 °C. All precursor alloys are used in the annealed state after cold-rolling. The dealloying direction indicated by a white arrow in (a) represents for other images.
Fig. 2. Abnormal ligament formation of the Fe50Ni50+Mg system at 700 °C in the arc melted precursor. (a) the inhomogeneous dealloying at GB, (b) wavy wetting of the Mg melt along with a GB, (c) characteristics of abnormal ligament and normal ligament formation in a grain interior, (d) IPF of an abnormal ligament, and (e) corresponding misorientation angle distribution map.
Fig. 3. EDS mapping results at 700 °C. Mg distribution map of (a) the annealed precursor and (b) the arc-melted precursor. (c) Fe and (d) Ni distribution maps of correspondence to (b). The dealloying direction indicated by a white arrow in (b) represents for (c) and (d) images as well.
Remaining precursor | Abnormal ligaments | Normal ligaments | |
---|---|---|---|
Fe | 51.09 | 91.21 | 95.12 |
Ni | 46.19 | 6.77 | 3.07 |
Mg | 0.73 | 2.02 | 1.98 |
Table 1. Chemical composition (at.%) of the remaining precursor region, the abnormal ligaments, and the normal ligaments in Fig. 3(b)-(d).
Remaining precursor | Abnormal ligaments | Normal ligaments | |
---|---|---|---|
Fe | 51.09 | 91.21 | 95.12 |
Ni | 46.19 | 6.77 | 3.07 |
Mg | 0.73 | 2.02 | 1.98 |
Fig. 4. Ligaments morphology after the post chemical etching process of the Fe50Ni50+Mg system immersed at 700 °C. (a) the inhomogeneous dealloying along with GB, (b) the structure of abnormal ligaments, and (c) the fast dissolution kinetics at TJ and the local dealloying direction change indicated by yellow arrows. The dealloying direction indicated by a white arrow in (a) represents for other images.
Fig. 5. EBSD results obtained from the annealed precursor immersed at 700 °C for 1 min. (a) FE-SEM image, and IPF maps of (b) the precursor fcc phase and (c) bcc ligament phase.
Fig. 7. Chemical composition analysis of the annealed precursor at 800 °C immersed for 6 min. (a) FE-SEM image, and corresponding EPMA mapping results of (b) Fe, (c) Ni, and (d) Mg. The white arrow in (a) stand for the global dealloying direction from the precursor's surface into its interior along ND. On the other hand, white arrows in (b) represent altered local dealloying directions at the grain interior. (e) Line profile analysis in a prior fcc grain region along a green arrow. A yellow dashed rectangle represents an abnormal ligament, and a white arrow shows a local dealloying direction. Blue, purple, and green line profiles correspond to Fe, Mg, and Ni, respectively.
Fig. 8. (a) Dealloying reaction layer of the (FeCo)50Ni50+Mg LMD using various precursors. Fractured 3DNP morphology synthesized from (b) the annealed and (c) cold-rolled precursors after the post etching process. (d) the reaction layer and (e) fractured 3DNP morphology of the cold-rolled (Fe49Co49V2)50Ni50 immersed at 700 °C into the Mg melt. (f) fractured 3DNP morphology of the annealed (Fe80Cr20)50Ni50 immersed at 700 °C, and (g) the detailed image of an abnormal ligament. ND is parallel to the dealloying reaction.
[1] |
T. Wada, K. Yubuta, A. Inoue, H. Kato, Mater. Lett. 65 (7) (2011) 1076-1078.
DOI URL |
[2] | X. Guo, C. Zhang, Q. Tian, D. Yu, Mater. Today Commun. 26 (2021) 102007. |
[3] | W.-Y. Park, T. Wada, S.-H. Joo, J. Han, H. Kato, Mater. Today Commun. (2020) 101120. |
[4] |
S.-G. Yu, K. Yubuta, T. Wada, H. Kato, Carbon 96 (2016) 403-410.
DOI URL |
[5] |
T. Wada, T. Ichitsubo, K. Yubuta, H. Segawa, H. Yoshida, H. Kato, Nano Lett. 14 (8) (2014) 4505-4510.
DOI URL |
[6] |
T. Wada, H. Kato, Scr. Mater. 68 (9) (2013) 723-726.
DOI URL |
[7] |
I.V. Okulov, P.A. Geslin, I.V. Soldatov, H. Ovri, S.H. Joo, H. Kato, Scr. Mater. 163 (2019) 133-136.
DOI URL |
[8] |
S.-H. Joo, T. Wada, H. Kato, Mater. Des. 180 (2019) 107908.
DOI URL |
[9] |
S.-H. Joo, H. Kato, J. Alloys Compd. 831 (2020) 154733.
DOI URL |
[10] | S.H. Joo, H. Kato, Mater. Des. (2020) 185. |
[11] |
S.H. Joo, K. Yubuta, H. Kato, Scr. Mater. 177 (2020) 38-43.
DOI URL |
[12] |
M. Tsuda, T. Wada, H. Kato, J. Appl. Phys. 114 (11) (2013) 113503.
DOI URL |
[13] |
I.V. Okulov, J. Weissmüller, J. Markmann, Sci. Rep. 7 (1) (2017) 20.
DOI PMID |
[14] |
I.V. Okulov, A.V. Okulov, I.V. Soldatov, B. Luthringer, R. Willumeit-Römer, T. Wada, H. Kato, J. Weissmüller, J. Markmann, Mater. Sci. Eng. C 88 (2018) 95-103.
DOI URL |
[15] |
I.V. Okulov, A.V. Okulov, A.S. Volegov, J. Markmann, Scr. Mater. 154 (2018) 68-72.
DOI URL |
[16] |
J.W. Kim, M. Tsuda, T. Wada, K. Yubuta, S.G. Kim, H. Kato, Acta Mater 84 (2015) 497-505.
DOI URL |
[17] |
I.V. Okulov, S.V. Lamaka, T. Wada, K. Yubuta, M.L. Zheludkevich, J. Weissmüller, J. Markmann, H. Kato, Nano Res. 11 (12) (2018) 6428-6435.
DOI URL |
[18] | S.H. Joo, J.W. Bae, W.Y. Park, Y. Shimada, T. Wada, H.S. Kim, A. Takeuchi, T.J. Konno, H. Kato, I.V. Okulov, Adv. Mater 32 (6)(2020). |
[19] |
A.V. Okulov, S.-H. Joo, H.S. Kim, H. Kato, I.V. Okulov, Metals 10 (10) (2020) 1396.
DOI URL |
[20] |
P.-A. Geslin, I. McCue, B. Gaskey, J. Erlebacher, A. Karma, Nat. Commun. 6 (2015) 8887.
DOI URL |
[21] |
I. McCue, B. Gaskey, P.-A. Geslin, A. Karma, J. Erlebacher, Acta Mater 115 (2016) 10-23.
DOI URL |
[22] |
S.-H. Joo, H. Kato, I.V. Okulov, Compos. B. Engin. 222 (1) (2021) 109044.
DOI URL |
[23] |
A. Takeuchi, A. Inoue, Mat. Trans. 46 (12) (2005) 2817-2829.
DOI URL |
[24] |
E. Detsi, E. De Jong, A. Zinchenko, Z. Vukovi ć, I. Vukovi ć, S. Punzhin, K. Loos, G. ten Brinke, H.A. De Raedt, P.R. Onck, J.T.M. De Hosson, Acta Mater. 59 (2011) 7488-7497.
DOI URL |
[25] |
C.A. Volkert, E.T. Lilleodden, D. Kramer, J. Weissmüller, Appl. Phys. Lett. 89 (6) (2006) 061920.
DOI URL |
[26] |
J. Biener, A.M. Hodge, A.V. Hamza, L.M. Hsiung, J.H.S. Nanoporous Jr, J. Appl. Phys. 97 (2) (2005) 024301.
DOI URL |
[27] |
J.R. Greer, J.T.M. De Hosson, Prog. Mater. Sci. 56 (6) (2011) 654-724.
DOI URL |
[28] |
F. Chen, X. Chen, L. Zou, Y. Yao, Y. Lin, Q. Shen, E.J. Lavernia, L. Zhang, Mater. Sci. Eng. A 660 (2016) 241-250.
DOI URL |
[29] |
R. Xia, C. Xu, W. Wu, X. Li, X.-Q. Feng, Y. Ding, J. Mater. Sci. 44 (17) (2009) 4728-4733.
DOI URL |
[30] | D.A. Porter, K.E. Easterling, K.E. Easterling, 3rd ed., CRC Press., 2009 (Revised Reprint). |
[31] | W. Ludwig, E. Pereiro-López, D. Bellet, ActaMater 53(1)(2005)151-162. |
[32] |
E.E. Glickman, M. Nathan, J. Appl. Phys. 85 (6) (1999) 3185-3191.
DOI URL |
[33] |
B.B. Straumal, O. Kogtenkova, P. Zi ˛eba, Acta Mater 56 (5) (2008) 925-933.
DOI URL |
[34] |
D. Camel, N. Eustathopoulos, P. Desré, Acta Metall 28 (3) (1980) 239-247.
DOI URL |
[35] |
Y. Takei, I. Shimizu, Phys. Earth Planet. Inter. 139 (3) (2003) 225-242.
DOI URL |
[36] |
K.K. Ikeuye, C.S. Smith, JOM 1 (10) (1949) 762-768.
DOI URL |
[37] | A. Passerone, R. Sangiorgi, N. Eustathopoulos, P. Desre, Met. Sci. 13 (6) (1979) 359-365. |
[38] |
I. Shimizu, Y. Takei, Acta Mater 53 (3) (2005) 811-821.
DOI URL |
[39] |
Y. Wu, X. Li, Z. Chen, J. Yu, S. Qiu, X.-B. Yang, Y.-J. Zhao, Mater. Res. Express 6 (2018) 016305.
DOI URL |
[40] |
D.H. Ping, Y.F. Gu, C.Y. Cui, H. Harada, Mater. Sci. Engin. A 456 (2007) 99-102.
DOI URL |
[41] |
H. Li, S. Xia, W. Liu, T. Liu, B. Zhou, J. Nucl. Mater. 439 (2013) 57-64.
DOI URL |
[1] | Alejandra Rodriguez-Contreras, Miquel Punset, José A. Calero, Francisco JavierGil, Elisa Ruperez, José María Manero. Powder metallurgy with space holder for porous titanium implants: A review [J]. J. Mater. Sci. Technol., 2021, 76(0): 129-149. |
[2] | Yao Jiang, Yuehui He, Haiyan Gao. Recent progress in porous intermetallics: Synthesis mechanism, pore structure, and material properties [J]. J. Mater. Sci. Technol., 2021, 74(0): 89-104. |
[3] | Nan Sun, Pei-Long Li, Ming Wen, Jiang-Feng Song, Zhi Zhang, Wen-Bin Yang, Yuan-Lin Zhou, De-Li Luo, Quan-Ping Zhang. Insights into heat management of hydrogen adsorption for improved hydrogen isotope separation of porous materials [J]. J. Mater. Sci. Technol., 2021, 76(0): 200-206. |
[4] | Guoxiang Pan, Feng Cao, Yujian Zhang, Xinhui Xia. N-doped carbon nanofibers arrays as advanced electrodes for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 55(0): 144-151. |
[5] | Jinchuan Wu, Changshun Ruan, Yufei Ma, Yuanliang Wang, Yanfeng Luo. Vital role of hydroxyapatite particle shape in regulating the porosity and mechanical properties of the sintered scaffolds [J]. J. Mater. Sci. Technol., 2018, 34(3): 503-507. |
[6] | Liu Weigang,Xu Yingming,Zhou Wei,Zhang Xianfa,Cheng Xiaoli,Zhao Hui,Gao Shan,Huo Lihua. A Facile Synthesis of Hierarchically Porous TiO2 Microspheres with Carbonaceous Species for Visible-light Photocatalysis [J]. J. Mater. Sci. Technol., 2017, 33(1): 39-46. |
[7] | Yujing Liu, Shujun Li, Wentao Hou, Shaogang Wang, Yulin Hao, Rui Yang, Timothy B. Sercombe, Lai-Chang Zhang. Electron Beam Melted Beta-type Ti-24Nb-4Zr-8Sn Porous Structures With High Strength-to-Modulus Ratio [J]. J. Mater. Sci. Technol., 2016, 32(6): 505-508. |
[8] | S. Bassaki, H. Niazi, F. Golestani-Fard, R. Naghizadeh, R. Bayati. Enhanced Photocatalytic Activity in p-NiO Grafted n-TiO2 Porous Coatings [J]. J. Mater. Sci. Technol., 2015, 31(4): 355-360. |
[9] | Qingquan Lai, Lei Zhang, Cai Chen, J.K. Shang. Tunable Reactive Wetting of Sn on Microporous Cu Layer [J]. J Mater Sci Technol, 2012, 28(4): 379-384. |
[10] | Ioan Vida-Simiti, Nicolaie Jumate, Valentin Moldovan, Gyorgy Thalmaier, Niculina Sechel. Characterization of Gradual Porous Ceramic Structures Obtained by Powder Sedimentation [J]. J Mater Sci Technol, 2012, 28(4): 362-366. |
[11] | B.V. Kaludjerovic, M.S. Trtica, B.B. Radak, J.M. Stasic, S.S. Krstic Musovic, V.M. Dodevski. Analysis of the Interaction of Pulsed Laser with Nanoporous Activated Carbon Cloth [J]. J Mater Sci Technol, 2011, 27(11): 979-984. |
[12] | Montasser DEWIDAR, H.Fouad MOHAMED, Jae-Kyoo LIM. A New Approach for Manufacturing a High Porosity Ti-6Al-4V Scaffolds for Biomedical Applications [J]. J Mater Sci Technol, 2008, 24(06): 931-935. |
[13] | C.Bouvy, B.L.Su. ZnO@Porous Media, Their PL and Laser Effect [J]. J. Mater. Sci. Technol., 2008, 24(04): 495-511. |
[14] | Sixin LI, Jiancheng ZHANG, Yue SHEN, Bo NI, Jingang ZHANG. Synthesis and Properties of Magnetic Nanoparticles [J]. J Mater Sci Technol, 2006, 22(05): 659-663. |
[15] | X.S.Zhao, Zuocheng ZHOU, Maria CHONG, Xiaoying BAO, Fabing SU, Wanping GUO, Qingfeng YAN, Lu LÜ. Template Approaches to Fabrication of Novel Porous Materials for Emerging Applications [J]. J Mater Sci Technol, 2005, 21(Supl.1): 20-24. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||