J. Mater. Sci. Technol. ›› 2022, Vol. 106: 33-40.DOI: 10.1016/j.jmst.2021.08.010
• Research Article • Previous Articles Next Articles
Jiangwei Wanga,e,*(), Anik H.M. Faisalb, Xiyao Lia, Youran Honga, Qi Zhua, Hongbin Beic, Ze Zhanga, Scott X Maod,*(
), Christopher R. Weinbergerb,*(
)
Received:
2021-07-27
Accepted:
2021-08-07
Published:
2022-04-20
Online:
2021-09-23
Contact:
Jiangwei Wang,Scott X Mao,Christopher R. Weinberger
About author:
Chris.Weinberger@colostate.edu (C.R. Weinberger).Jiangwei Wang, Anik H.M. Faisal, Xiyao Li, Youran Hong, Qi Zhu, Hongbin Bei, Ze Zhang, Scott X Mao, Christopher R. Weinberger. Discrete twinning dynamics and size-dependent dislocation-to twin transition in body-centred cubic tungsten[J]. J. Mater. Sci. Technol., 2022, 106: 33-40.
Fig. 1. Nucleation of deformation twins in bicrystal W nanowires. (a) Pristine structure of a [$\bar{1}10$] -oriented bicrystal W nanowire. (b, c) Compression-induced deformation twins in the nanowire. Two deformation twins nucleated from the GB upon deformation. The size of twin 2 was 0.75 nm after nucleation (b) which grew into a thick twin rapidly (c). (d) The FFT pattern of twin 2. (e-h) Atomistic process of GB-assisted nucleation of twin 2. The deformation induced the migration of some GB segments (e-f), and the emission of a twin from the GB with a thickness of 6 atomic layers (g-h). (i) The distribution of thickness of twin nuclei in 22 W nanowires right after the nucleation.
Fig. 2. Discrete growth dynamics of deformation twins in W nanowires. (a-e) The nature of growth of a GB-nucleated deformation twin. The twin thickened repeatedly with an increment of 0.41 nm, corresponding to three-layers of {112} planes. (f) Atomic level observation of the discrete advancement of a TB with steps of approximately 0.41 nm thick. Note that due to the resolution limit, the atomic configuration in front of the TB step cannot be clearly identified. (g) A plot of twin thickness for the growth of a deformation twin, demonstrating that most growth events are approximately 3 atomic layers thick. (h) A deformation twin in bulk Nb deformed at 77 K exhibiting the stepwise TB structure, with step heights of about three atomic layers.
Fig. 3. DFT simulations of the twinning GSF curve in W. (a) Schematic showing the deformation process used to create the twinning GSF curve. (b) The GSF twinning curve computed using DFT for BCC W. The inset highlights just the valleys and peaks of the curve. (c) The amplitude of the Fourier transform, i.e. the spectrum, of the twinning GSF curve as a function of frequency. Two primary frequencies occur in the curve, with the main frequency at 1 cycles/bp and a secondary frequency at 0.276 cycles/bp. (d) The GSF twinning curves by the simultaneous propagation of a single, double, triple and quadruple twinning dislocation.
Fig. 4. Size-dependent deformation twinning in [$\bar{1}10$] -oriented W bicrystal nanowires. (a-c) Dislocation-dominated plasticity in a [$\bar{1}10$]-oriented W nanowire with a diameter of 65 nm. The inset in (a) is the corresponding diffraction pattern. Before deformation, no lattice defects existed in the nanowire (a); straining caused the nucleation of dislocations from multiple sources in the nanowire (b); a deformation band formed by extensive localized slip (c). The red arrows in (b, c) point out the dislocation lines, while the pink arrow in (c) indicates the deformation band. (d) The observed dominant deformation mechanism plotted as a function of diameter in [$\bar{1}10$] -oriented W bicrystal nanowires. From this plot, there is a mechanism transition size of -40 nm. (e-g) Twinning-controlled plasticity in W nanowires with the diameter of 11 nm. (h-i) An enlarged image and corresponding FFT pattern confirm the deformation twin.
Fig. 5. Competition between deformation twin and dislocation slip in a 39 nm W nanowire. (a) Pristine bicrystal W nanowire with a diameter of 39 nm. (b, c) The W nanowire initially deformed by deformation twin (from a surface) and subsequent growth. (d) The combination of deformation twinning and dislocation slip during further straining, due to the dislocation emissions from the free surface, twin front, and GB.
[1] |
J.W. Christian, S. Mahajan, Prog. Mater. Sci. 39 (1995) 1-157.
DOI URL |
[2] |
Y.T. Zhu, X.Z. Liao, X.L. Wu, Prog. Mater. Sci. 57 (2012) 1-62.
DOI URL |
[3] |
I.J. Beyerlein, X. Zhang, A. Misra, Annu. Rev. Mater. Sci. 44 (2014) 329-363.
DOI URL |
[4] | C.R. Weinberger, W. Cai, J. Mater. Chem. 22 (2012) 3277-3292. |
[5] |
S. Zhao, Q. Zhu, X. An, H. Wei, K. Song, S.X. Mao, J. Wang, J. Mater. Sci. Technol. 53 (2020) 118-125.
DOI URL |
[6] |
V. Vítek, Philos. Mag. 18 (1968) 773-786.
DOI URL |
[7] |
V. Vítek, Scr. Metall. 4 (1970) 725-732.
DOI URL |
[8] |
A.W. Sleeswyk, Philos Mag. 8 (1963) 1467-1486.
DOI URL |
[9] |
K. Ogawa, R. Maddin, Acta Metall. 12 (1964) 713-721.
DOI URL |
[10] |
A. Ojha, H. Sehitoglu, Philos. Mag. Lett. 94 (2014) 647-657.
DOI URL |
[11] | S. Mahajan, Philos. Mag. 26 (1972) 161-171. |
[12] |
S. Mahajan, Acta Metall. 23 (1975) 671-684.
DOI URL |
[13] |
J. Holden, Acta Metall. 8 (1960) 424-430.
DOI URL |
[14] |
A.W. Sleeswyk, Acta Metall. 10 (1962) 705-725.
DOI URL |
[15] |
K.P.D. Lagerlöf, Acta Metall. Mater. 41 (1993) 2143-2151.
DOI URL |
[16] |
S. Ogata, J. Li, S. Yip, Phys. Rev. B 71 (2005) 224102.
DOI URL |
[17] |
J. Wang, Z. Zeng, C.R. Weinberger, Z. Zhang, T. Zhu, S.X. Mao, Nat. Mater. 14 (2015) 594-600.
DOI URL |
[18] |
S. Li, X. Ding, J. Li, X. Ren, J. Sun, E. Ma, Nano Lett 10 (2010) 1774-1779.
DOI URL |
[19] |
S. Mahajan, J. Phys. F-Met. Phys. 2 (1972) 19-23.
DOI URL |
[20] |
C.Q. Chen, J.N. Florando, M. Kumar, K.T. Ramesh, K.J. Hemker, Acta Mater 69 (2014) 114-125.
DOI URL |
[21] |
B. Jiang, A. Tu, H. Wang, H. Duan, S. He, H. Ye, K. Du, Acta Mater 155 (2018) 56-68.
DOI URL |
[22] |
S. Li, X. Ding, J. Deng, T. Lookman, J. Li, X. Ren, J. Sun, A. Saxena, Phys. Rev. B 82 (2010) 205435.
DOI URL |
[23] |
S. Mahajan, Metall. Mater. Trans. A 12 (1981) 379-386.
DOI URL |
[24] |
S. Ogata, J. Li, S. Yip, Europhys. Lett. 68 (2004) 405-411.
DOI URL |
[25] |
G. Sainath, B.K. Choudhary, Comput. Mater. Sci. 111 (2016) 406-415.
DOI URL |
[26] |
Y. Yue, P. Liu, Q. Deng, E. Ma, Z. Zhang, X. Han, Nano Lett 12 (2012) 4045-4049.
DOI URL |
[27] |
T. Zhu, J. Li, Prog. Mater. Sci. 55 (7) (2010) 710-757.
DOI URL |
[28] |
J.R. Greer, J.T.M. De Hosson, Prog. Mater. Sci. 56 (6) (2011) 654-724.
DOI URL |
[29] |
A. V. Korchuganov, A. N. Tyumentsev, K.P. Zolnikov, I.Y. Litovchenko, D.S. Kryzhe-vich, E. Gutmanas, S. Li, Z. Wang, S.G. Psakhie, J. Mater. Sci. Technol. 35 (2019) 201-206.
DOI |
[30] |
S. Wei, Q. Wang, H. Wei, J. Wang, Mater. Res. Lett. 7 (2019) 210-216.
DOI URL |
[31] |
J. Wang, Z. Zeng, M. Wen, Q. Wang, D. Chen, Y. Zhang, P. Wang, H. Wang, Z. Zhang, S.X. Mao, T. Zhu, Sci. Adv. 6 (2020) eaay2792.
DOI URL |
[32] |
J.-Y. Kim, D. Jang, J.R. Greer, Acta Mater 58 (2010) 2355-2363.
DOI URL |
[33] |
S. Brinckmann, J.Y. Kim, J.R. Greer, Phys. Rev. Lett. 100 (2008) 155502.
DOI URL |
[34] |
L. Huang, Q.J. Li, Z.W. Shan, J. Li, J. Sun, E. Ma, Nat. Commun. 2 (2011) 547.
DOI PMID |
[35] |
P.-J. Wang, Q. Cao, S. Liu, Q. Peng, Tungsten 3 (2021) 234-242.
DOI URL |
[36] | C.R. Weinberger, W. Cai, Proc. Natl. Acad. Sci. U.S.A. 105 (2008) 14304. |
[37] |
G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169-11186.
DOI PMID |
[38] |
G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6 (1996) 15-50.
DOI URL |
[39] |
G. Kresse, J. Hafner, Phys. Rev. B 47 (1993) 558-561.
DOI PMID |
[40] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.
DOI PMID |
[41] |
P.E. Blöchl, Phys. Rev. B 50 (1994) 17953-17979.
DOI URL |
[42] |
J.D. Pack, H.J. Monkhorst, Phys. Rev. B 16 (1977) 1748-1749.
DOI URL |
[43] | M. Frigo, S.G. Johnson, Speech, I. Signal Process. 3 (1998) 1381-1384. |
[44] |
M.S. Duesbery, V.J.A.M. Vitek, Acta Mater. 46 (1998) 1481-1492.
DOI URL |
[45] |
J. Wang, Y. Wang, W. Cai, J. Li, Z. Zhang, S.X. Mao, Sci. Rep. 8 (2018) 4574.
DOI URL |
[46] |
Q. Wang, J. Wang, J. Li, Z. Zhang, S.X. Mao, Sci. Adv. 4 (2018) eaas8850.
DOI URL |
[47] |
J.R. Greer, W.D. Nix, Phys. Rev. B 73 (2006) 245410.
DOI URL |
[48] |
B. Hwang, M. Kang, S. Lee, C.R. Weinberger, P. Loya, J. Lou, S.H. Oh, B. Kim, S.M. Han, Nanoscale 7 (38) (2015) 15657-15664.
DOI URL |
[49] |
J.-Y. Kim, D. Jang, J.R. Greer, Int. J. Plast. 28 (2012) 46-52.
DOI URL |
[50] |
C. Dang, W. Lin, F. Meng, H. Zhang, S. Fan, X. Li, K. Cao, H. Yang, W. Zhou, Z. Fan, J.-J. Kai, Y. Lu, J. Mater. Sci. Technol. 95 (2021) 193-202.
DOI URL |
[51] |
M.S. Duesbery, V. Vitek, Acta Mater. 46 (1998) 1481.
DOI URL |
[52] |
L.A. Zepeda-Ruiz, A. Stukowski, T. Oppelstrup, V.V. Bulatov, Nature 550 (2017) 492-495.
DOI URL |
[1] | Yijie Ban, Yongfeng Geng, Jinrui Hou, Yi Zhang, Meng Zhou, Yanlin Jia, Baohong Tian, Yong Liu, Xu Li, Alex A. Volinsky. Properties and precipitates of the high strength and electrical conductivity Cu-Ni-Co-Si-Cr alloy [J]. J. Mater. Sci. Technol., 2021, 93(0): 1-6. |
[2] | J.C. Cheng, S.P. Zhao, D. Fan, H.W. Chai, S.J. Ye, C. Li, S.N. Luo, Y. Cai, J.Y. Huang. Multiple ballistic impacts on 2024-T4 aluminum alloy by spheres: Experiments and modelling [J]. J. Mater. Sci. Technol., 2021, 94(0): 164-174. |
[3] | Hui Fu, Xiaoye Zhou, Bo Wu, Lei Qian, Xu-Sheng Yang. Atomic-scale dissecting the formation mechanism of gradient nanostructured layer on Mg alloy processed by a novel high-speed machining technique [J]. J. Mater. Sci. Technol., 2021, 82(0): 227-238. |
[4] | Chang-Yu Hung, Yu Bai, Nobuhiro Tsuji, Mitsuhiro Murayama. Grain size altering yielding mechanisms in ultrafine grained high-Mn austenitic steel: Advanced TEM investigations [J]. J. Mater. Sci. Technol., 2021, 86(0): 192-203. |
[5] | Shixing Huang, Qinyang Zhao, Yongqing Zhao, Cheng Lin, Cong Wu, Weiju Jia, Chengliang Mao, Vincent Ji. Toughening effects of Mo and Nb addition on impact toughness and crack resistance of titanium alloys [J]. J. Mater. Sci. Technol., 2021, 79(0): 147-164. |
[6] | Jia Li, Li Li, Chao Jiang, Qihong Fang, Feng Liu, Yong Liu, Peter K. Liaw. Probing deformation mechanisms of gradient nanostructured CrCoNi medium entropy alloy [J]. J. Mater. Sci. Technol., 2020, 57(0): 85-91. |
[7] | Chaoyu Han, Shibo Wen, Feng Ye, Wenjia Wu, Shaowei Xue, Yongfeng Liang, Binbin Liu, Junpin Lin. Deformation twinning in equiaxed-grained Fe-6.5 wt.%Si alloy after rotary swaging [J]. J. Mater. Sci. Technol., 2020, 49(0): 25-34. |
[8] | Bingqiang Wei, Song Ni, Yong Liu, Xiaozhou Liao, Min Song. Phase transformation and structural evolution in a Ti-5at.% Al alloy induced by cold-rolling [J]. J. Mater. Sci. Technol., 2020, 49(0): 211-223. |
[9] | Timothy Alexander Listyawan, Hyunjong Lee, Nokeun Park. A new guide for improving mechanical properties of non-equiatomic FeCoCrMnNi medium- and high-entropy alloys with ultrasonic nanocrystal surface modification process [J]. J. Mater. Sci. Technol., 2020, 59(0): 37-43. |
[10] | Yaoli Zhang, Jinguo Li, Xinguang Wang, Yiping Lu, Yizhou Zhou, Xiaofeng Sun. The interaction and migration of deformation twin in an eutectic high-entropy alloy AlCoCrFeNi2.1 [J]. J. Mater. Sci. Technol., 2019, 35(5): 902-906. |
[11] | Bo-Yu Liu, Nan Yang, Jian Wang, Matthew Barnett, Yun-Chang Xin, Di Wu, Ren-Long Xin, Bin Li, R.Lakshmi Narayan, Jian-Feng Nie, Ju Li, Evan Ma, Zhi-Wei Shan. Insight from in situ microscopy into which precipitate morphology can enable high strength in magnesium alloys [J]. J. Mater. Sci. Technol., 2018, 34(7): 1061-1066. |
[12] | Yingjie Ma, Sabry S. Youssef, Xin Feng, Hao Wang, Sensen Huang, Jianke Qiu, Jiafeng Lei, Rui Yang. Fatigue crack tip plastic zone of α + β titanium alloy with Widmanstatten microstructure [J]. J. Mater. Sci. Technol., 2018, 34(11): 2107-2115. |
[13] | B.Q. Li, M.L. Sui, S.X. Mao. Twinnability Predication for fcc Metals [J]. J Mater Sci Technol, 2011, 27(2): 97-100. |
[14] | Jinyu GUO, Ke WANG, Lei LU. Tensile properties of Cu with deformation twins induced by SMAT [J]. J Mater Sci Technol, 2006, 22(06): 789-792. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||