J. Mater. Sci. Technol. ›› 2021, Vol. 93: 1-6.DOI: 10.1016/j.jmst.2021.03.049
• Original article • Next Articles
Yijie Bana,b,c,1, Yongfeng Genga,b,c,1, Jinrui Houa,b,c, Yi Zhanga,b,c,*(), Meng Zhoua,b,c,*(
), Yanlin Jiad,*(
), Baohong Tiana,b,c, Yong Liua,b,c, Xu Lie, Alex A. Volinskyf
Received:
2021-02-04
Revised:
2021-03-17
Accepted:
2021-03-31
Published:
2021-12-10
Online:
2021-12-10
Contact:
Yi Zhang,Meng Zhou,Yanlin Jia
About author:
jiayanlin@126.com (Y. Jia).Yijie Ban, Yongfeng Geng, Jinrui Hou, Yi Zhang, Meng Zhou, Yanlin Jia, Baohong Tian, Yong Liu, Xu Li, Alex A. Volinsky. Properties and precipitates of the high strength and electrical conductivity Cu-Ni-Co-Si-Cr alloy[J]. J. Mater. Sci. Technol., 2021, 93: 1-6.
Fig. 1. (a) Variation of hardness with aging time for the Cu-1.5Ni-1.1Co-0.6Si-0.1Cr alloy aged at 500 °C; (b) Tensile strength and conductivity of this work and various types of alloys [24], [25], [26].
Fig. 2. Microstructures of the Cu-1.5Ni-1.1Co-0.6Si-0.1Cr alloy aging at 500 °C for 1 h. (a) Bright-field TEM images of the alloy; (b) beam direction of SADP along [001]Cu; (c) EDS spectra of the δ-(Ni, Co)2Si in (d); (d)?(h) BF TEM image, and EDS maps of the (Ni, Co)2Si, respectively.
Fig. 3. HRTEM images and corresponding FFT patterns of the Cu-1.5Ni-1.1Co-0.6Si-0.1Cr alloy aged at 500 °C for 1 h: (a) crystal structure of (Ni, Co)2Si; (b) bright-field TEM image; (c) dark-field TEM image; (d) nanoscale stacking faults; (e) HRTEM image taken from [110]Cu, (f) FFT pattern of (Ni, Co)2Si in (e); (g) FFT pattern of Cu matrix in (e); (h) HRTEM image of Cu matrix and (Ni, Co)2Si boundary; (i) inversed FFT images of i region in (e); (j?l) bright-field images and SADP of Cr.
Fig. 4. (a) Stress-strain curves of the Cu-1.5Ni-1.1Co-0.6Si-0.1Cr alloy and Cu-Ni-Si-(x) alloys designed based on aging; (b) bright-field TEM images; (c) HRTEM image of TB layers; (d) and (e) FFT pattern of twins and Cu matrix; (f) EBSD image of Cu-1.5Ni-1.1Co-0.6Si-0.1Cr alloy aged at 500 °C for 1 h; (g) KAM map; (h) twin boundaries (TB) maps, where the blue lines are the twin boundaries.
[1] | T. Hu, J.H. Chen, J.Z. Liu, Z.R. Liu, C.L. Wu, Acta Mater, 61(2013), pp. 1210-1219. |
[2] | M.G. C, Electrical conductor alloy Electr World, 89 (1) (1927), p.137. |
[3] | S. Suzuki, N. Shibutani, K. Mimura, M. Isshiki, Y. Waseda, J. Alloys Compd., 417(2006), pp. 116-120. |
[4] | H. Tsubakino, R. Nozato, A. Yamamoto, Mater. Sci., 26(1991), pp. 2851-2856. |
[5] | Y.F. Geng, X. Li, H.L. Zhou, Y. Zhang, Y.L. Jia, B.H. Tian, Y. Liu, Alex A. Volinsky, X.H. Zhang, K.X. Song, G.X. Wang, L.H. Li, J.R. Hou, J. Alloys Compd., 842 (2019), Article 153518 |
[6] | J.Z. Li, H. Ding, B.M. Li, Mater. Sci. Eng. A, 802(2020), Article 140413. |
[7] | T. Varol, O. Güler, S.B. Akay, H.C. Aksa, Powder Technol, 384(2021), pp. 236-246 |
[8] | W. Wang, H. Kang, Z. Chen, C. Zou, R. Li, G. Yin, T. Wang, Mater. Sci. Eng. A, 673(2016), pp. 378-390. |
[9] | S. Suzuki, K. Hirabayashi, H. Shibata, K. Mimura, M. Isshiki, Y. Waseda, Scr. Mater., 48(2003), pp. 431-435. |
[10] | L. Lu, Y. Shen, L. Chen, K. Lu, Science, 304(2004), pp. 422-426. |
[11] | K. Lu, L. Lu, S. Suresh, Science, 324(2009), pp. 349-352. |
[12] | P. Xue, B.L. Xiao, Z.Y. Ma, Scr. Mater., 68(2013), pp. 751-754. |
[13] | S.C. Krishna, J. Srinath, A.K. Jha, B. Pant, S.C. Sharma, K.M. George, J. Mater. Eng. Perform., 22(2013), pp. 2115-2120. |
[14] | X.P. Xiao, Z.Y. Yi, T.T. Chen, R.Q. Liu, H. Wang, J. Alloys Compd., 660(2016), pp. 178-183. |
[15] | Z. Zhao, Y. Zhang, H.B. Tian, Y.L. Jia, Y. Liu, K.X. Song, A.A. Volinsky, J. Alloys Compd., 797(2019), pp. 1327-1337. |
[16] | J. Yi, Y.L. Jia, Y.Y. Zhao, Z. Xiao, K.J. He, Q. Wang, M.P. Wang, Z. Zhou, Acta Mater, 166(2019), pp. 261-270. |
[17] | Y.F. Geng, Y.J. Ban, B.J. Wang, K.X. Song, Y. Zhang, Y.L. Jia, B.H. Tian, Y. Liu, A.A. Volinsky,. Mater. Res. Technol., 9(2020), pp. 11918-11934. |
[18] | V.C. Srivastava, A. Schneider, V. Uhlenwinkel, S.N. Ojha, K. Bauckhage, J. Mater. Process. Technol., 147(2004), pp. 174-180. |
[19] | D. Li, Q. Wang, B. Jiang, W. Zhou, C. Dong, W. Hua, Q. Chen, Prog. Nat. Sci., 27(2017), pp. 467-473. |
[20] | M. Miki, Y. Ogino, Mater. Trans., JIM, 35(1994), pp. 313-318. |
[21] | C.J. Guo, J.S. Chen, X.P. Xiao, H. Huang, W.J. Wang, B. Yang, J. Alloys Compd., 835(2020), Article 155275. |
[22] | Y.J. Ban, Y. Zhang, Y.L. Jia, B.H. Tian, A.A. Volinsky, X.H. Zhang, Q.F. Zhang, Y.F. Geng, Y. Liu, X. Li, Mater. Des., 191(2020), Article 108613. |
[23] | Y.J. Ban, Y. Zhang, B.H. Tian, K.X. Song, M. Zhou, X.H. Zhang, Y.L. Jia, X. Li, Y.F. Geng, Y. Liu, A.A. Volinsky, Mater. Character., 169(2020), Article 110656. |
[24] | Q. Lei, Z. Li, T. Xiao, Y. Pang, Z.Q. Xiang, W.T. Qiu, Z. Xiao Intermetallics, 42(2013), pp. 77-84. |
[25] | W. Wang, E.Y. Gu, Z.N. Chen, H.J. Kang, Z.J. Chen, C.L. Zou, R.G. Li, G.M. Yin, T.M. Wang, Mater. Charact., 144(2018), pp. 532-546. |
[26] | Q. Lei, Z. Xiao, W.P. Hu, B.M. Derby, Z. Li, Mater. Sci. Eng. A, 697(2017), pp. 37-47. |
[27] | K. Toman, The structure of Ni2Si, Acta Crystallogr, 5 (3)(1952), pp. 329-331. |
[28] | S. Geller, V.M. Wolontis, Acta Crystallogr, 8(1955), pp. 83-87 |
[29] | Z.L. Zhao, Z. Xiao, Z. Li, W.T. Qiu, H.Y. Jiang, L. Qian, Mater. Sci. Eng. A, 759(2019), pp. 396-403. |
[30] | J. Li, G. Huang, L. Peng, Y. Kang, Materials (Basel), 12 (2019), p. 2076. |
[31] | J.Z. Huang, Z. Xiao, J. Dai, Z. Li, H.Y. Jiang, X.X. Zhang, Mater. Sci. Eng. A, 744(2019), pp. 754-763. |
[32] | L. Ren, W.L. Xiao, D. Kent, M. Wan, C. Ma, L. Zhou, Scr. Mater., 184(2020), pp. 6-11. |
[33] | F. Yu, W.L. Xiao, D. Kent, M.S. Dargusch, J.S. Wang, X.Q. Zhao, C.L. Ma, Scr. Mater., 187(2020), pp. 285-290. |
[34] | W. Chen, J.Y. Zhang, S. Cao, Y. Pan, M.D. Huang, Q.G. Hu, Q.Y. Sun, L. Xiao, J. Sun, Acta Mater, 117(2016), pp. 68-80. |
[35] | L. Wu, Nonlinear Anal, 156(2017), pp. 167-196. |
[36] | Z. Wang, W. Lu, H. Zhao, C.H. Libscher, J.Y. He, D. Ponge, D. Qaabe, Z.M. Li, Sci. Adv., 6 (2020), p.9543. |
[37] | T.H. Courtney, Mechanical Behavior of Materials, Waveland Press (2005). |
[38] | D. Jorge-Badiola, A. Iza-Mendia, I. Gutiérrez, Mater. Sci. Eng. A, 394(2005), pp. 445-454. |
[39] | A. Matthiessen, C. Vogt, Philos. Trans. R. Soc. London, 154(1864), pp. 167-200. |
[40] | S.H. Pan, J. Yuan, P. Zhang, M. Sokoluk, G.C. Yao, X.C. Li, Appl Phys. Lett., 116(2020), Article 014102. |
[41] | W. Zeng, J.W. Xie, D.S. Zhou, Z.Q. Fu, D.L. Zhang, E.J. Lavernia, J. Alloys Compd., 745(2018), pp. 55-62. |
[42] | S.H. Pan, Z.Y. Guan, G.C. Yao, X.C. Li, Curr. Appl. Phys., 19(2019), pp. 452-457. |
[43] | J. Buha, T. Ohkubo, Metall. Mater. Trans. A, 39(2008), pp. 2259-2273. |
[44] | Z. Zeng, J.F. Nie, S.W. Xu, N. Birbilis, Nat. Commun., 8 (2017), p.972. |
[45] | S.H. Jiang, H. Wang, Y. Wu, X.J. Liu, H.H. Chen, Z.P. Lu, Nature, 544(2017), pp. 460-464. |
[1] | Tao Xiang, Zeyun Cai, Peng Du, Kun Li, Zongwei Zhang, Guoqiang Xie. Dual phase equal-atomic NbTaTiZr high-entropy alloy with ultra-fine grain and excellent mechanical properties fabricated by spark plasma sintering [J]. J. Mater. Sci. Technol., 2021, 90(0): 150-158. |
[2] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Flat friction stir spot welding of low carbon steel by double side adjustable tools [J]. J. Mater. Sci. Technol., 2021, 66(0): 1-9. |
[3] | Kaisheng Ming, Shuimiao Jiang, Xiaoyuan Niu, Bo Li, Xiaofang Bi, Shijian Zheng. High-temperature strength-coercivity balance in a FeCo-based soft magnetic alloy via magnetic nanoprecipitates [J]. J. Mater. Sci. Technol., 2021, 81(0): 36-42. |
[4] | Zenan Ma, Jiawei Li, Jijun Zhang, Aina He, Yaqiang Dong, Guoguo Tan, Mingqiang Ning, Qikui Man, Xincai Liu. Ultrathin, flexible, and high-strength Ni/Cu/metallic glass/Cu/Ni composite with alternate magneto-electric structures for electromagnetic shielding [J]. J. Mater. Sci. Technol., 2021, 81(0): 43-50. |
[5] | Hima Bindu Ruttala, Thiruganesh Ramasamy, Raghu Ram Teja Ruttala, Tuan Hiep Tran, Jee-Heon Jeong, Han-Gon Choi, Sae Kwang Ku, Chul Soon Yong, Jong Oh Kim. Mitochondria-targeting multi-metallic ZnCuO nanoparticles and IR780 for efficient photodynamic and photothermal cancer treatments [J]. J. Mater. Sci. Technol., 2021, 86(0): 139-150. |
[6] | C.J. Barr, K. Xia. Grain refinement in low SFE and particle-containing nickel aluminium bronze during severe plastic deformation at elevated temperatures [J]. J. Mater. Sci. Technol., 2021, 82(0): 57-68. |
[7] | J.X. Hou, X.Y. Li, K. Lu. Orientation dependence of mechanically induced grain boundary migration in nano-grained copper [J]. J. Mater. Sci. Technol., 2021, 68(0): 30-34. |
[8] | Jixing Lin, Xian Tong, Kun Wang, Zimu Shi, Yuncang Li, Matthew Dargusch, Cuie Wen. Biodegradable Zn-3Cu and Zn-3Cu-0.2Ti alloys with ultrahigh ductility and antibacterial ability for orthopedic applications [J]. J. Mater. Sci. Technol., 2021, 68(0): 76-90. |
[9] | Jianping Lai, Wen Hu, Amit Datye, Jingbei Liu, Jan Schroers, Udo D. Schwarz, Jiaxin Yu. Revealing the relationships between alloy structure, composition and plastic deformation in a ternary alloy system by a combinatorial approach [J]. J. Mater. Sci. Technol., 2021, 84(0): 97-104. |
[10] | Chunquan Liu, Xianhua Chen, Yuan Yuan, Wei Zhang, Yusheng Zhang, Fusheng Pan. Altered age-hardening behavior in the ultrafine-grained surface layer of Mg-Zn-Y-Ce-Zr alloy processed by sliding friction treatment [J]. J. Mater. Sci. Technol., 2021, 78(0): 20-29. |
[11] | Yuqiao Dong, Jiaqi Li, Dake Xu, Guangling Song, Dan Liu, Haipeng Wang, M.Saleem Khan, Ke Yang, Fuhui Wang. Investigation of microbial corrosion inhibition of Cu-bearing 316L stainless steel in the presence of acid producing bacterium Acidithiobacillus caldus SM-1 [J]. J. Mater. Sci. Technol., 2021, 64(0): 176-186. |
[12] | Yifan Wang, Yanli Lu, Jing Zhang, Wenchao Yang, Changlin Yang, Pan Wang, Xiaoqing Song, Zheng Chen. Investigation of the 12 orientations variants of nanoscale Al precipitates in eutectic Si of Al-7Si-0.6Mg alloy [J]. J. Mater. Sci. Technol., 2021, 67(0): 186-196. |
[13] | Shuai-Feng Chen, Hong-Wu Song, Ming Cheng, Ce Zheng, Shi-Hong Zhang, Myoung-Gyu Lee. Texture modification and mechanical properties of AZ31 magnesium alloy sheet subjected to equal channel angular bending [J]. J. Mater. Sci. Technol., 2021, 67(0): 211-225. |
[14] | Zibing An, Shengcheng Mao, Yinong Liu, Li Wang, Hao Zhou, Bin Gan, Ze Zhang, Xiaodong Han. A novel HfNbTaTiV high-entropy alloy of superior mechanical properties designed on the principle of maximum lattice distortion [J]. J. Mater. Sci. Technol., 2021, 79(0): 109-117. |
[15] | Xiaofei Cui, Wei Fu, Daqing Fang, Guangli Bi, Zijun Ren, Shengwu Guo, Suzhi Li, Xiangdong Ding, Jun Sun. Mechanical properties and deformation mechanisms of a novel fine-grained Mg-Gd-Y-Ag-Zr-Ce alloy with high strength-ductility synergy [J]. J. Mater. Sci. Technol., 2021, 66(0): 64-73. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||