J. Mater. Sci. Technol. ›› 2022, Vol. 115: 103-114.DOI: 10.1016/j.jmst.2022.01.001
• Research Article • Previous Articles Next Articles
Shucai Zhanga, Huabing Lia,b,*(), Zhouhua Jianga,*(
), Hao Fenga, Zhejian Wena, Junyu Renc, Peide Hanc
Received:
2021-12-05
Revised:
2021-12-26
Accepted:
2022-01-04
Published:
2022-07-10
Online:
2022-01-22
Contact:
Huabing Li,Zhouhua Jiang
About author:
jiangzh@smm.neu.edu.cn (Z. Jiang).Shucai Zhang, Huabing Li, Zhouhua Jiang, Hao Feng, Zhejian Wen, Junyu Ren, Peide Han. Unveiling the mechanism of yttrium significantly improving high-temperature oxidation resistance of super-austenitic stainless steel S32654[J]. J. Mater. Sci. Technol., 2022, 115: 103-114.
Steel | C | Si | Mn | P | S | Cr | Ni | Mo | Cu | N | Ce | La | Y | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RE-free | 0.013 | 0.40 | 3.00 | 0.005 | 0.002 | 24.51 | 22.48 | 7.29 | 0.51 | 0.50 | - | - | - | Bal. |
0.01Ce | 0.015 | 0.39 | 3.03 | 0.005 | 0.002 | 24.48 | 22.51 | 7.28 | 0.48 | 0.50 | 0.01 | - | - | Bal. |
0.01La | 0.014 | 0.41 | 3.05 | 0.005 | 0.002 | 24.50 | 22.49 | 7.30 | 0.50 | 0.50 | - | 0.01 | - | Bal. |
0.01Y | 0.015 | 0.40 | 3.02 | 0.005 | 0.002 | 24.52 | 22.53 | 7.33 | 0.49 | 0.50 | - | - | 0.01 | Bal. |
Table 1. Chemical compositions of experimental super-austenitic stainless steels S32654 (wt.%).
Steel | C | Si | Mn | P | S | Cr | Ni | Mo | Cu | N | Ce | La | Y | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RE-free | 0.013 | 0.40 | 3.00 | 0.005 | 0.002 | 24.51 | 22.48 | 7.29 | 0.51 | 0.50 | - | - | - | Bal. |
0.01Ce | 0.015 | 0.39 | 3.03 | 0.005 | 0.002 | 24.48 | 22.51 | 7.28 | 0.48 | 0.50 | 0.01 | - | - | Bal. |
0.01La | 0.014 | 0.41 | 3.05 | 0.005 | 0.002 | 24.50 | 22.49 | 7.30 | 0.50 | 0.50 | - | 0.01 | - | Bal. |
0.01Y | 0.015 | 0.40 | 3.02 | 0.005 | 0.002 | 24.52 | 22.53 | 7.33 | 0.49 | 0.50 | - | - | 0.01 | Bal. |
EDS point | Fe | Cr | Ni | Mo | Mn | O |
---|---|---|---|---|---|---|
A1 | 45.23 | 7.58 | 21.53 | 0.00 | 1.95 | 23.71 |
A2 | 43.09 | 9.08 | 21.23 | 0.00 | 2.21 | 24.39 |
A3 | 44.03 | 8.13 | 19.29 | 0.00 | 1.81 | 26.74 |
A4 | 43.52 | 9.52 | 20.45 | 0.00 | 1.45 | 25.06 |
B1 | 23.91 | 2.59 | 9.04 | 36.79 | 5.52 | 22.15 |
B2 | 21.65 | 2.79 | 7.51 | 34.59 | 5.66 | 27.80 |
B3 | 22.81 | 2.18 | 7.98 | 32.51 | 6.54 | 27.98 |
B4 | 24.12 | 3.47 | 9.21 | 28.86 | 4.54 | 29.80 |
Table 2. Chemical compositions of typical oxides in the surface oxide layer of S32654 samples after oxidation at 1200 °C for 1 h.
EDS point | Fe | Cr | Ni | Mo | Mn | O |
---|---|---|---|---|---|---|
A1 | 45.23 | 7.58 | 21.53 | 0.00 | 1.95 | 23.71 |
A2 | 43.09 | 9.08 | 21.23 | 0.00 | 2.21 | 24.39 |
A3 | 44.03 | 8.13 | 19.29 | 0.00 | 1.81 | 26.74 |
A4 | 43.52 | 9.52 | 20.45 | 0.00 | 1.45 | 25.06 |
B1 | 23.91 | 2.59 | 9.04 | 36.79 | 5.52 | 22.15 |
B2 | 21.65 | 2.79 | 7.51 | 34.59 | 5.66 | 27.80 |
B3 | 22.81 | 2.18 | 7.98 | 32.51 | 6.54 | 27.98 |
B4 | 24.12 | 3.47 | 9.21 | 28.86 | 4.54 | 29.80 |
Fig. 5. SEM cross-section morphologies and EDS element maps of S32654 samples after oxidation at 1200 °C for 1 h: (a) RE-free, (b) 0.01Ce, (c) 0.01La and (d) 0.01Y.
Fig. 6. Simulational models of FeCrMo(O) structure: (a) the surface without Cr atom and the sub-surface without RE atom (1, 2 and 3 indicate the exchange positions of Cr and Mo atom) and (b) the surface with 50% Cr atom and the sub-surface with one or two RE atoms (1 and 2 indicate the positions where the first and second RE atoms are introduced).
Fig. 7. The addition of RE atom on the segregation and binding energy: (a) the segregation energy of Cr towards the surface and (b) the binding energy between O and the surface.
RE3+ | Ionic radius (pm) | Coordination number | RE2O3 | Volume (Å3) | Space group |
---|---|---|---|---|---|
Ce3+ | 102.0 | 6 | Ce2O3 | 77.169 | $P\bar{3}m1$ |
La3+ | 103.2 | 6 | La2O3 | 83.017 | $P\bar{3}m1$ |
Y3+ | 90.0 | 6 | Y2O3 | 69.708 | $P\bar{3}m1$ |
Table 3. Ionic radius of trivalent rare earth cation and volume of RE2O3 [54,55].
RE3+ | Ionic radius (pm) | Coordination number | RE2O3 | Volume (Å3) | Space group |
---|---|---|---|---|---|
Ce3+ | 102.0 | 6 | Ce2O3 | 77.169 | $P\bar{3}m1$ |
La3+ | 103.2 | 6 | La2O3 | 83.017 | $P\bar{3}m1$ |
Y3+ | 90.0 | 6 | Y2O3 | 69.708 | $P\bar{3}m1$ |
Fig. 11. TEM bright-field images and EDS spectra of the oxide grain boundaries in the S32654 samples after oxidation at 1200 °C for 2 min: (a) 0.01Ce, (b) 0.01La and (c) 0.01Y.
[1] | ASME Boiler and Pressure Vessel Cod II, in: Materials, Part A, Ferrous Material Specifications (Beginning to SA-450), ASME, New York, 2013, pp. 377-390. |
[2] |
S.C. Zhang, H.B. Li, Z.H. Jiang, Z.X. Li, J.X. Wu, B.B. Zhang, F. Duan, H. Feng, H.C. Zhu, J. Mater. Sci. Technol. 42 (2020) 143-155.
DOI URL |
[3] |
S.C. Zhang, H.B. Li, Z.H. Jiang, B.B. Zhang, Z.X. Li, J.X. Wu, H. Feng, H.C. Zhu, F. Duan, Corros. Sci. 163 (2020) 108295.
DOI URL |
[4] | B.B. Zhang, H.B. Li, S.C. Zhang, Z.H. Jiang, Y. Lin, H. Feng, H.C. Zhu, Mater. Char-act. 175 (2021) 111096. |
[5] |
S.C. Zhang, J.T. Yu, H.B. Li, Z.H. Jiang, Y.F. Geng, H. Feng, H.C. Zhu, J. Mater. Sci. Technol. 102 (2022) 105-114.
DOI URL |
[6] |
Y. Han, H.B. Li, H. Feng, Y.Z. Tian, Z.H. Jiang, T. He, Mater. Sci. Eng. A 814 (2021) 141235.
DOI URL |
[7] |
H.B. Li, B.B. Zhang, Z.H. Jiang, S.C. Zhang, H. Feng, P.D. Han, N. Dong, W. Zhang, G.P. Li, G.W. Fan, Q.Z. Lin, J. Alloy Compd. 686 (2016) 326-338.
DOI URL |
[8] |
F. Saeidpour, H. Ebrahimifar, Corros. Sci. 182 (2021) 109280.
DOI URL |
[9] |
M.R. Ardigo-Besnard, I. Popa, S. Chevalier, Corros. Sci. 148 (2019) 251-263.
DOI |
[10] |
K. Jaffréa, H. Abe, B. Ter-Ovanessian, N. Mary, B. Normand, Y. Watanabe, J. Nucl. Mater. 556 (2021) 153258.
DOI URL |
[11] |
S. Benafiaa, D. Retrainta, S. Yapi Broub, B. Panicauda, J.L. Grosseau Poussardc, Corros. Sci. 136 (2018) 188-200.
DOI URL |
[12] | J. Stringer, Mater. Sci. Eng. A 120 (1989) 129-137. |
[13] |
V. Babic, C. Geers, I. Panas, Oxid. Met. 93 (2020) 229-245.
DOI URL |
[14] |
D.P. Moon, Mater. Sci. Technol. 5 (1989) 754-764.
DOI URL |
[15] |
X.H. Zhang, C. Zhang, Y.D. Zhang, S. Salam, H.F. Wang, Z.G. Yang, Corros. Sci. 88 (2014) 405-415.
DOI URL |
[16] |
T.A. Ramanarayanan, R. Ayer, R. Petkovic-Luton, D.P. Leta, Oxid. Met. 29 (1988) 445-472.
DOI URL |
[17] |
X.H. Cheng, L. Fan, L. Liu, K.F. Du, D.H. Wang, J. Rare Earths 34 (2016) 1139-1147.
DOI URL |
[18] |
B.A. Pint, Oxid. Met. 45 (1996) 1-37.
DOI URL |
[19] | H.M. Tawancy, N.M. Abbas, Scr. Mater. 29 (1993) 689-694. |
[20] |
L.V. Ramanathan, Corros. Sci. 35 (1993) 871-878.
DOI URL |
[21] |
J. Lu, Y. Chen, C. Zhao, H. Zhang, L. Luo, B. Xu, X. Zhao, F. Guo, P. Xiao, Corros. Sci. 153 (2019) 178-190.
DOI URL |
[22] |
F.A. Golightly, F.H. Stott, G.C. Wood, Oxid. Met. 10 (1976) 163-187.
DOI URL |
[23] |
Y. Saito, T. Maruyama, T. Amano, Mater. Sci. Eng. 87 (1987) 275-280.
DOI URL |
[24] |
T.L. Liu, K.H. Zheng, J. Wang, Y.F. Lin, Z.B. Zheng, J. Long, Corros. Sci. 166 (2020) 108423.
DOI URL |
[25] |
Z.B. Zheng, S. Wang, J. Long, J. Wang, K.H. Zheng, Corros. Sci. 164 (2020) 108359.
DOI URL |
[26] |
Z. Yang, J. Pan, Z.X. Wang, Y.M. Wu, G.D. Jia, J. Li, X.S. Xiao, Corros. Sci. 172 (2020) 108728.
DOI URL |
[27] |
J.B. Yan, Y.M. Gao, L. Liang, Z.Z. Ye, Y.F. Li, W. Chen, J.J. Zhang, Corros. Sci. 53 (2011) 329-337.
DOI URL |
[28] |
L.L. Wei, J.H. Zheng, L.Q. Chen, R.D.K. Misra, Corros. Sci. 142 (2018) 79-92.
DOI URL |
[29] |
Z. Yang, J.T. Lu, Z. Yang, Y. Li, Y. Yuan, Y.F. Gu, Corros. Sci. 125 (2017) 106-113.
DOI URL |
[30] |
Y. Wu, Y.T. Li, Y.T. Xu, M.D. Kang, J. Wang, B.D. Sun, Acta Mater. 211 (2021) 116879.
DOI URL |
[31] | M. Fukumoto, C. Tachikawame, Y. Matsuzaka, M. Hara, Corros. Sci. (2012) 105-113. |
[32] |
G. Kresse, J. Hafner, Phys. Rev. B 48 (1993) 13115-13118.
DOI PMID |
[33] |
G. Kresse, J. Hafner, Phys. Rev. B 49 (1994) 14251-14269.
DOI PMID |
[34] |
S.C. Zhang, Z.H. Jiang, H.B. Li, B.B. Zhang, P.F. Chang, J.X. Wu, H. Feng, H.C. Zhu, Mater. Charact. 145 (2018) 233-245.
DOI URL |
[35] |
H. Fujikawa, T. Morimoto, Y. Nishiyama, S.B. Newcomb, Oxid. Met. 59 (2003) 23-40.
DOI URL |
[36] |
D. Oquab, N. Xu, D. Monceau, D.J. Young, Corros. Sci. 52 (2010) 255-262.
DOI URL |
[37] | M.S. Li, High Temperature Corrosion of Metals, 1st ed., Metallurgical Industry Press, Beijing, 2001. |
[38] | T.P. Li, High Temperature Oxidation and Hot Corrosion of Metals, 1st ed., Chemical Industry Press, Beijing, 2003. |
[39] |
E.A. Polman, T. Fransent, P.J. Gellings, J. Phys. Condens. Matter. 1 (1989) 4497-4510.
DOI URL |
[40] |
F. Riffard, H. Buscail, E. Caudron, R. Cueff, C. Issartel, S. Perrier, Appl. Surf. Sci. 252 (2006) 3697-3706.
DOI URL |
[41] |
P.E. Blöchl, Phys. Rev. B 50 (1994) 17953-17979.
DOI URL |
[42] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.
DOI PMID |
[43] |
H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188-5192.
DOI URL |
[44] |
K. Przybylski, G.J. Yurek, J. Electrochem. Soc. 135 (1988) 517-523.
DOI URL |
[45] | O. Kubaschewski, C.B. Alcock, Metallurgical Thermochemistry, 5th ed., Perga-mon Press, Oxford, 1979. |
[46] | I. Barin, Q. Knacke, Thermochemical Properties of Inorganic Substances, 1st ed., Springer, Berlin Heidelberg, 1973. |
[47] | M. Binnewies, E. Milke, Thermochemical Data of Elements and Compounds, 2nd ed., Wiley-VCH Verlag GmbH, Weinheim, 2002. |
[48] | R. Dehoff, Thermodynamics in Materials Science, 2nd ed., CRC Press, Boca Ra-ton, 2006. |
[49] |
J.C. Pivin, D. Delaunay, C. Roques-Carmes, A.M. Huntz, P. Lacombe, Corros. Sci. 20 (1980) 351-373.
DOI URL |
[50] |
J.C. Pivin, C. Roques-Carmes, J. Chaumont, H. Bernas, Corros. Sci. 20 (1980) 947-962.
DOI URL |
[51] |
C.V.D. Eijk, Ø. Grong, F. Haakonsen, L. Kolbeinsen, G. Tranell, ISIJ Int. 49 (2009) 1046-1050.
DOI URL |
[52] |
Z. Dong, Z.Q. Ma, L.M. Yu, Y.C. Liu, Nat. Commun. 12 (2021) 5052.
DOI PMID |
[53] |
W.Q. Hu, Z. Dong, L.M. Yu, Z.Q. Ma, Y.C. Liu, J. Mater. Sci. Technol. 36 (2020) 84-90.
DOI URL |
[54] |
S. Sato, R. Takahashi, M. Kobune, H. Gotoh, Appl. Catal. A Gen. 356 (2009) 57-63.
DOI URL |
[55] |
G. Adachi, N. Imanaka, Chem. Rev. 98 (1998) 1479-1514.
DOI URL |
[56] |
Z.X. Shi, S.Z. Liu, M. Han, J.R. Li, J.Rare Earths 31 (2013) 795-799.
DOI URL |
[57] |
Y.F. Zhang, D.M. Zhu, D.A. Shores, Acta Metall. Mater. 43 (1995) 4015-4025.
DOI URL |
[58] |
C.M. Cotell, G.J. Yurek, R.J. Hussey, D.F. Mitchell, M.J. Grahamw, Oxid. Met. 34 (1990) 173-200.
DOI URL |
[59] | K. Przybylski, A.J. Garratt-Reed, G.J. Yurek, J. Etectrochem. Soc. 135 (1988) 509-517. |
[60] |
C.M. Cotell, G.J. Yurek, R.J. Hussey, D.F. Mitchell, M.J. Grahamw, Oxid. Met. 34 (1990) 201-216.
DOI URL |
[61] |
M.H. Lagrange, A.M. Hvyrz, J.H. Davidson, Corros. Sci. 24 (1984) 613-627.
DOI URL |
[62] |
X.H. Xu, H. Wei, J.H. Xiang, L. Wang, M.F. Liu, H.H. Zhang, D.D. Men, J.S. An, J.Rare Earths 38 (2020) 1126-1130.
DOI URL |
[63] |
W.H. Yu, J. Tian, W. Tian, J. Zhao, Y.Q. Li, Y.Z. Liu, J. Rare Earths 33 (2015) 221-226.
DOI URL |
[64] |
R. Thanneeru, S. Patil, S. Deshpande, S. Seal, Acta Mater. 55 (2007) 3457-3466.
DOI URL |
[65] |
W.C. Hagel, J. Am. Ceram. Soc. 48 (1965) 70-75.
DOI URL |
[66] | F.H. Stott, G.C. Wood, F.A. Golightly, Corros. Sci. 19 (1979) 869-887. |
[1] | Aobo Hu, Shuizhou Cai. Spatial phase structure and oxidation process of Al-W alloy powder with high sphericity [J]. J. Mater. Sci. Technol., 2022, 114(0): 62-72. |
[2] | Yue Gao, Jinting Jiu, Chuantong Chen, Katsuaki Suganuma, Rong Sun, Zhi-Quan Liu. Oxidation-enhanced bonding strength of Cu sinter joints during thermal storage test [J]. J. Mater. Sci. Technol., 2022, 115(0): 251-255. |
[3] | Gwanghyo Choi, Won Seok Choi, Yoon Sun Lee, Dahye Kim, Ji Hyun Sung, Seungjun An, Chang-Seok Oh, Amine Hattal, Madjid Djemai, Brigitte Bacroix, Guy Dirras, Pyuck-Pa Choi. Decomposition behavior of yttria-stabilized zirconia and its effect on directed energy deposited Ti-based composite material [J]. J. Mater. Sci. Technol., 2022, 112(0): 138-150. |
[4] | Ł. Maj, D. Wojtas, A. Jarzębska, M. Bieda, K. Trembecka-Wójciga, R. Chulist, W. Kozioł, A. Góral, A. Trelka, K. Janus, J. Kawałko, M. Kulczyk, F. Muhaffel, H. Çimenoğlu, K. Sztwiertnia. Titania coating formation on hydrostatically extruded pure titanium by micro-arc oxidation method [J]. J. Mater. Sci. Technol., 2022, 111(0): 224-235. |
[5] | Lei Zhou, Jiaping Zhang, Dou Hu, Qiangang Fu, Wuqing Ding, Jiaqi Hou, Bing Liu, Mingde Tong. High temperature oxidation and ablation behaviors of HfB2-SiC/SiC coatings for carbon/carbon composites fabricated by dipping-carbonization assisted pack cementation [J]. J. Mater. Sci. Technol., 2022, 111(0): 88-98. |
[6] | Cecil Cherian Lukose, Guillaume Zoppi, Martin Birkett. Mn3Ag(1-x)Cu(x)N antiperovskite thin films with ultra-low temperature coefficient of resistance [J]. J. Mater. Sci. Technol., 2022, 99(0): 138-147. |
[7] | Xinghong Zhang, Baihe Du, Ping Hu, Yuan Cheng, Jiecai Han. Thermal response, oxidation and ablation of ultra-high temperature ceramics, C/SiC, C/C, graphite and graphite-ceramics [J]. J. Mater. Sci. Technol., 2022, 102(0): 137-158. |
[8] | Qiyun Zhang, Renquan Wu, Yunhong Zhou, Qilang Lin, Changqing Fang. A novel surface-oxidized rigid carbon foam with hierarchical macro-nanoporous structure for efficient removal of malachite green and lead ion [J]. J. Mater. Sci. Technol., 2022, 103(0): 15-28. |
[9] | Dongsen Geng, Haiqing Li, Ziliang Chen, Yu X. Xu, Qimin Wang. Microstructure, oxidation behavior and tribological properties of AlCrN/Cu coatings deposited by a hybrid PVD technique [J]. J. Mater. Sci. Technol., 2022, 100(0): 150-160. |
[10] | Nikolaus Jäger, Michael Meindlhumer, Michal Zitek, Stefan Spor, Hynek Hruby, Farwah Nahif, Jaakko Julin, Martin Rosenthal, Jozef Keckes, Christian Mitterer, Rostislav Daniel. Impact of Si on the high-temperature oxidation of AlCr(Si)N coatings [J]. J. Mater. Sci. Technol., 2022, 100(0): 91-100. |
[11] | Bowen Zhang, Chuantong Chen, Takuya Sekiguchi, Yang Liu, Caifu Li, Suganuma Katsuaki. Development of anti-oxidation Ag salt paste for large-area (35 × 35 mm2) Cu-Cu bonding with ultra-high bonding strength [J]. J. Mater. Sci. Technol., 2022, 113(0): 261-270. |
[12] | Qiangang Fu, Pei Zhang, Lei Zhuang, Lei Zhou, Jiaping Zhang, Jie Wang, Xianghui Hou, Ralf Riedel, Hejun Li. Micro/nano multiscale reinforcing strategies toward extreme high-temperature applications: Take carbon/carbon composites and their coatings as the examples [J]. J. Mater. Sci. Technol., 2022, 96(0): 31-68. |
[13] | Wei Wei, Shujiang Geng, Fuhui Wang. Evaluation of Ni-Fe base alloys as inert anode for low-temperature aluminium electrolysis [J]. J. Mater. Sci. Technol., 2022, 107(0): 216-226. |
[14] | Dongdong Zhang, Jielong Zhou, Feng Peng, Ji Tan, Xianming Zhang, Shi Qian, Yuqin Qiao, Yu Zhang, Xuanyong Liu. Mg-Fe LDH sealed PEO coating on magnesium for biodegradation control, antibacteria and osteogenesis [J]. J. Mater. Sci. Technol., 2022, 105(0): 57-67. |
[15] | C.Z. Fang, H.C. Basoalto, M.J. Anderson, H.Y. Li, S.J. Williams, P. Bowen. A numerical study on the influence of grain boundary oxides on dwell fatigue crack growth of a nickel-based superalloy✩ [J]. J. Mater. Sci. Technol., 2022, 104(0): 224-235. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||