J. Mater. Sci. Technol. ›› 2022, Vol. 115: 97-102.DOI: 10.1016/j.jmst.2021.10.007
• Research Article • Previous Articles Next Articles
Eun-Ae Choia, Seung Zeon Hana(), Hyung Giun Kimb, Jee Hyuk Ahna, Sung Hwan Limc, Sangshik Kimd,*(
), Nong-Moon Hwange,*(
), Kwangho Kimf, Jehyun Leeg
Received:
2021-07-07
Revised:
2021-10-01
Accepted:
2021-10-02
Published:
2022-01-21
Online:
2022-01-21
Contact:
Sangshik Kim,Nong-Moon Hwang
About author:
nmhwang@snu.ac.kr (N.-M. Hwang).Eun-Ae Choi, Seung Zeon Han, Hyung Giun Kim, Jee Hyuk Ahn, Sung Hwan Lim, Sangshik Kim, Nong-Moon Hwang, Kwangho Kim, Jehyun Lee. Coherent interface driven super-plastic elongation of brittle intermetallic nano-fibers at room temperature[J]. J. Mater. Sci. Technol., 2022, 115: 97-102.
Fig. 1. (a) Fiber-like Ni2Si intermetallic compounds were precipitated discontinuously during aging throughout the matrix of Cu-Ni-Si alloy. (b) Fiber-like Ni2Si precipitates with an average diameter of 13.7 nm were selectively extracted by acid treatment from the Cu-Ni2Si matrix. The alloy bulk was plastically elongated up to 95% by mechanical drawing at room temperature. (c) Fibers of Ni2Si intermetallic were uni-directionally aligned along the direction of drawing, and the average diameter of fibers became 6.7 nm. (d) Plastically elongated nano-fibers of Ni2Si intermetallic could also be extracted by acid treatment from the matrix.
Fig. 2. (A) The major slip direction/plane in pure copper, and (B) the general stacking fault energy (GSFE) associated with it, where a step represents the shortest distance between two atoms divided by 10 along slip direction. (C) The slip direction/plane of Ni2Si matrix which corresponded to those of (A), and (D) the GSFE of Ni2Si intermetallic on the (C). The atomic arrangements of Cu along six slip directions are equivalent, while there are two different slip directions in Ni2Si. (2 for 〈100〉 direction, 4 for <$2\bar{3}6$> direction) The blue, white, red balls and complete arrows in (A) and (C) denote Cu, Ni, Si atoms and the Burgers vectors for each slip system, respectively.
Fig. 3. (A) High resolution TEM image showing a fiber of Ni2Si intermetallic compound precipitated discontinuously in the Cu matrix during aging. The Ni2Si intermetallic fiber in Cu-Ni2Si alloy was plastically deformed by drawing at room temperature up to (B) 50%, (C) 90% and (D) 95%, respectively, in terms of the reduction of area. Insets in each figure represent the fast Fourier transformation images showing the relevant planes of Cu and Ni2Si having a coherent orientation relationship.
Fig. 4. (A) The atomic structure of strained Ni2Si intermetallic that is coherently bonded to the matrix of Cu (to which all the Ni2Si lattices are fixed to those of copper). (B) The general stacking fault energies (GSFE) of strained Ni2Si intermetallic along major slip directions are compared with those of the unstrained counterpart. (C) The atomic structure and (D) the GSFE of the newly formed interface of slipped Ni2Si fibers in the Cu matrix, as shown in Fig. S9. (E) The change in intrinsic stacking fault (ISF) energy (ISFE) from ① to ⑥ in (B) of Ni2Si intermetallic with three different conditions: monolithic, strained by copper matrix and after atomic relaxation. Atomic relaxation is simulated under a constraint with fixed lattices. (F) Un-relaxed and relaxed structures of ISF of ③ in (E). The blue, white and red balls in (A), (C) and (F) denote Cu, Ni and Si atoms, respectively.
[1] |
O. Izumi, Mater. Trans. JIM 30 (1989) 627-638.
DOI URL |
[2] |
K. Gschneidner Jr., A. Russell, A. Pecharsky, J. Morris, Z. Zhang, T. Lograsso, D. Hsu, C.H. Chesterlo, Y. Ye, A. Slager, D. Kesse, Nat. Mater. 2 (2003) 587-590.
PMID |
[3] |
M. Yamaguchi, Y. Umakoshi, Prog. Mater. Sci. 34 (1990) 1-148.
DOI URL |
[4] |
A.M. Russel, Adv. Eng. Mater. 5 (2003) 629-639.
DOI URL |
[5] |
R.L. Fleisher, J. Mater. Sci. 22 (1987) 2281-2288.
DOI URL |
[6] |
W.L. Zhou, J.T. Guo, R.S. Chen, J.Y. Zhou, Mater. Lett. 51 (2001) 342-346.
DOI URL |
[7] |
S. Takeuch, T. Hashimoto, M. Nakamura, Intermetallics 2 (1994) 289-296.
DOI URL |
[8] |
B. Jiao, J.H. Luan, C.T. Liu, Prog. Nat. Sci. Mater. Int. 26 (2016) 1-12.
DOI URL |
[9] |
A.I. Taub, R.L. Fleisher, Science 243 (1989) 616-621.
PMID |
[10] |
Y. Song, A.L. Schmitt, S. Jin, Nano Lett 7 (2007) 965-969.
DOI URL |
[11] |
X.Q. Yan, H.J. Yuan, J.X. Wang, D.F. Liu, Z.P. Zhou, Y. Gao, L. Song, L.F. Liu, W.Y. Zhou, G. Wang, S.S. Xie, Appl. Phys. A 79 (2004) 1853-1856.
DOI URL |
[12] |
M. Sheehan, Q.M. Ramasse, H. Geaney, K.M. Ryan, Nanoscale 10 (2018) 19182-19187.
DOI PMID |
[13] |
S.Z. Han, E.A. Choi, S.H. Lim, S. Kim, J. Lee, Prog. Mater. Sci. 117 (2021) 100720.
DOI URL |
[14] |
S.A. Lockyer, F.W. Noble, J. Mater. Sci. 29 (1994) 218-226.
DOI URL |
[15] |
R.D. Knutsen, C.I. Lang, J.A. Basson, Acta Mater 52 (2004) 2407-2417.
DOI URL |
[16] |
SZ .Han, S.H. Lim, S. Kim, J. Lee, M. Goto, H.G. Kim, B. Han, K.H. Kim, Sci. Rep. 6 (2016) 30907.
DOI URL |
[17] |
F.J. Humphreys, P.N. Kalu, Acta Metall. Mater. 38 (1990) 917-930.
DOI URL |
[18] |
S. Semboshi, Y. Kaneno, T. Takasugi, S.Z. Han, N. Masahashi, Metall. Mater. Trans. A 50 (2019) 1389-1396.
DOI URL |
[19] |
M. Tałach-Duma ´nska, P. Zieba, A. Pawłowski, J. Wojewoda, W. Gust, Mater. Chem. Phys. 80 (2003) 476-481.
DOI URL |
[20] |
F. Findik, J. Mater. Sci. Lett. 17 (1998) 79-83.
DOI URL |
[21] |
S. Ikeda, S. Saito, K. Suzuki, J. Mater, Process. Technol. 45 (1994) 395-400.
DOI URL |
[22] |
V. Vidal, L. Thilly, F. Leocouturier, P.O. Renault, Acta Mater 54 (2006) 1063-1075.
DOI URL |
[23] |
J.D. Verhoeven, L.S. Chumbley, F.C. Laabs, W.A. Spitzig, Acta Metall. Mater. 39 (1991) 2825-2834.
DOI URL |
[24] |
S.Z. Han, J. Kang, S.D. Kim, S.Y. Choi, H.G. Kim, J. Lee, K. Kim, S.H. Lim, B. Han, Sci. Rep. 5 (2015) 15050.
DOI URL |
[25] |
D. Connétablea, O. Thomas, J. Alloys Compd. 509 (2011) 2639-2644.
DOI URL |
[26] |
G. Lu, N. Kioussis, Phys. Rev. B 62 (2000) 3099-3108.
DOI URL |
[27] |
S.K. Yadav, X.Y. Liu, J. Wang, R. Ramprasad, A. Misra, R.G. Hoagland, Philos. Mag. 94 (2014) 464-475.
DOI URL |
[28] |
S. Kibey, J.B. Liu, M.J. Curtis, D.D. Johnson, H. Sehitoglu, Acta Mater 54 (2006) 2991-3001.
DOI URL |
[1] | Xianglong Zhou, Tao Yuan, Tianyu Ma. Shortened processing duration of high-performance Sm-Co-Fe-Cu-Zr magnets by stress-aging [J]. J. Mater. Sci. Technol., 2022, 106(0): 70-76. |
[2] | Yun-qi Tong, Wei Li, Qiu-sheng Shi, Lin Chen, Guan-jun Yang. Self-lubricating epoxy-based composite abradable seal coating eliminating adhesive transfer via hierarchical design [J]. J. Mater. Sci. Technol., 2022, 104(0): 145-154. |
[3] | Seyedmohammad Tabaie, Farhad Rézaï-Aria, Bertrand C.D. Flipo, Mohammad Jahazi. Dissimilar linear friction welding of selective laser melted Inconel 718 to forged Ni-based superalloy AD730™: Evolution of strengthening phases [J]. J. Mater. Sci. Technol., 2022, 96(0): 248-261. |
[4] | J.F. Zhao, H.P. Wang, B. Wei. A new thermodynamically stable Nb2Ni intermetallic compound phase revealed by peritectoid transition within binary Nb-Ni alloy system [J]. J. Mater. Sci. Technol., 2022, 100(0): 246-253. |
[5] | Sen Yu, Zhe Yu, Dagang Guo, Hui Zhu, Minghua Zhang, Jianye Han, Zhentao Yu, Yemin Cao, Gui Wang. Enhanced bioactivity and interfacial bonding strength of Ti3Zr2Sn3Mo25Nb alloy through graded porosity and surface bioactivation [J]. J. Mater. Sci. Technol., 2022, 100(0): 137-149. |
[6] | Olga Sacco, Paola Franco, Iolanda De Marco, Vincenzo Vaiano, Emanuela Callone, Riccardo Ceccato, Francesco Parrino. Photocatalytic activity of Eu-doped ZnO prepared by supercritical antisolvent precipitation route: When defects become virtues [J]. J. Mater. Sci. Technol., 2022, 112(0): 49-58. |
[7] | Junxian Bai, Weilin Chen, Rongchen Shen, Zhimin Jiang, Peng Zhang, Wei Liu, Xin Li. Regulating interfacial morphology and charge-carrier utilization of Ti3C2 modified all-sulfide CdS/ZnIn2S4 S-scheme heterojunctions for effective photocatalytic H2 evolution [J]. J. Mater. Sci. Technol., 2022, 112(0): 85-95. |
[8] | Chunwei Dong, Hongyu Zhou, Hui Liu, Bo Jin, Zi Wen, Xingyou Lang, Jianchen Li, Jaekwang Kim, Qing Jiang. Inhibited shuttle effect by functional separator for room-temperature sodium-sulfur batteries [J]. J. Mater. Sci. Technol., 2022, 113(0): 207-216. |
[9] | Shaohan Li, Weiwei Sun, Yi Luo, Jin Yu, Litao Sun, Bao-Tian Wang, Ji-Xuan Liu, Guo-Jun Zhang, Igor Di Marco. Pushing the limit of thermal conductivity of MAX borides and MABs [J]. J. Mater. Sci. Technol., 2022, 97(0): 79-88. |
[10] | Chong Peng, Hu Tang, Changjian Geng, Pengjie Liang, Biao Wan, Yujiao Ke, Yuefeng Wang, Peng Jia, Wenfeng Peng, Lina Qiao, Kenan Li, Xiaohong Yuan, Yucheng Zhao, Mingzhi Wang. Extraordinary toughening enhancement in nonstoichiometric vanadium carbide [J]. J. Mater. Sci. Technol., 2022, 97(0): 176-181. |
[11] | Dong Huang, Yanxin Zhuang. Break the strength-ductility trade-off in a transformation-induced plasticity high-entropy alloy reinforced with precipitation strengthening [J]. J. Mater. Sci. Technol., 2022, 108(0): 125-132. |
[12] | Zhong Zheng, Xuexi Zhang, Mingfang Qian, Jianchao Li, Muhammad Imran, Lin Geng. Ultra-high strength GNP/2024Al composite via thermomechanical treatment [J]. J. Mater. Sci. Technol., 2022, 108(0): 164-172. |
[13] | Lixia Ma, Min Wan, Weidong Li, Jie Shao, Xiaoning Han, Jichun Zhang. On the superplastic deformation mechanisms of near-α TNW700 titanium alloy [J]. J. Mater. Sci. Technol., 2022, 108(0): 173-185. |
[14] | Xingpu Zhang, Xiaotong Deng, Haofei Zhou, Jiangwei Wang. Atomic-scale study on the precipitation behavior of an Al-Zn-Mg-Cu alloy during isochronal aging [J]. J. Mater. Sci. Technol., 2022, 108(0): 281-292. |
[15] | C. Yang, M.Q. Li, Y.G. Liu. Characterization of face-centered cubic structure and deformation mechanisms in high energy shot peening process of TC17 [J]. J. Mater. Sci. Technol., 2022, 110(0): 136-151. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||