J. Mater. Sci. Technol. ›› 2022, Vol. 115: 81-96.DOI: 10.1016/j.jmst.2021.09.017
• Research Article • Previous Articles Next Articles
Qimin Shia, Shoufeng Yangb,*(), Yi Suna,*(
), Yifei Gua, Ben Mercelisc, Shengping Zhonga, Bart Van Meerbeekc, Constantinus Politisa
Received:
2021-08-04
Revised:
2021-09-17
Accepted:
2021-09-29
Published:
2022-07-10
Online:
2022-01-20
Contact:
Shoufeng Yang,Yi Sun
About author:
* yi.sun@uzleuven.be (Y. Sun).Qimin Shi, Shoufeng Yang, Yi Sun, Yifei Gu, Ben Mercelis, Shengping Zhong, Bart Van Meerbeek, Constantinus Politis. In-situ formation of Ti-Mo biomaterials by selective laser melting of Ti/Mo and Ti/Mo2C powder mixtures: A comparative study on microstructure, mechanical and wear performance, and thermal mechanisms[J]. J. Mater. Sci. Technol., 2022, 115: 81-96.
Fig. 1. (a) Ti/Mo powder mixture, (b) Ti/Mo2C powder mixture, (c) island laser scanning strategy applied during SLM, and (d) prepared specimens with flat and dense top surfaces on (e) SLM-fabricated Ti-7.5Mo alloys and (f) in-situ Ti-7.5Mo-2.4TiC composites.
Thermal conductivity, ks-bulk (W/(m K)) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Ti [at certain temperatures/K] | 21.8 [293] | 19.9 [473] | 18.6 [673] | 20 [873] | 21.1 [1073] | 22.6 [1273] | 24.3 [1473] | 26 [1673] | 27.8 [1873] |
Mo: 139 | Mo2C: 20.92 | TiC: 23 | |||||||
Heat capacity, CP-bulk (J/(kg K)) | |||||||||
Ti [at certain temperatures/K] | 520 [293] | 560 [473] | 610 [673] | 660 [873] | 710 [1073] | 620 [1273] | 650 [1473] | 745 [1673] | 900 [1873] |
Mo: 250 | Mo2C: 347 | TiC: 543 | |||||||
Density, ρBulk (kg/m3) | |||||||||
Ti: 4540 | Mo: 10,200 | Mo2C: 9180 | TiC: 4910 | ||||||
Melting temperature, TM (K) | |||||||||
Ti: 1933 | Mo: 2873 | Mo2C: 2960 | TiC: 3340 | ||||||
Laser absorptivity of powder, A (%) | |||||||||
Ti: 77 | Mo: 34 | Mo2C: 80 | TiC: 82 |
Table 1. Thermophysical parameters of CP Ti [34], Mo [35], Mo2C and TiC [32,36].
Thermal conductivity, ks-bulk (W/(m K)) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Ti [at certain temperatures/K] | 21.8 [293] | 19.9 [473] | 18.6 [673] | 20 [873] | 21.1 [1073] | 22.6 [1273] | 24.3 [1473] | 26 [1673] | 27.8 [1873] |
Mo: 139 | Mo2C: 20.92 | TiC: 23 | |||||||
Heat capacity, CP-bulk (J/(kg K)) | |||||||||
Ti [at certain temperatures/K] | 520 [293] | 560 [473] | 610 [673] | 660 [873] | 710 [1073] | 620 [1273] | 650 [1473] | 745 [1673] | 900 [1873] |
Mo: 250 | Mo2C: 347 | TiC: 543 | |||||||
Density, ρBulk (kg/m3) | |||||||||
Ti: 4540 | Mo: 10,200 | Mo2C: 9180 | TiC: 4910 | ||||||
Melting temperature, TM (K) | |||||||||
Ti: 1933 | Mo: 2873 | Mo2C: 2960 | TiC: 3340 | ||||||
Laser absorptivity of powder, A (%) | |||||||||
Ti: 77 | Mo: 34 | Mo2C: 80 | TiC: 82 |
Fig. 3. Roughness profiles on the polished bottom surface of SLM-fabricated (a) Ti-7.5Mo alloys and (b) in-situ Ti-7.5Mo-2.4TiC composites, and (c) schematic of sliding tests.
Fig. 4. BSE-SEM images and EDS analyses showing chemical homogeneity in SLM-fabricated (a-c) Ti-7.5Mo alloys and (d-f) in-situ Ti-7.5Mo-2.4TiC composites. The red rectangle and red line in (b) highlight the EDS map region and EDS line region shown in (c); the red rectangle in (e) highlights the EDS map region shown in (f).
Fig. 5. XRD spectra of SLM-fabricated Ti-7.5Mo alloys and in-situ Ti-7.5Mo-2.4TiC composites obtained (a) over a wide range of 2θ (30°-80°) and (b) in the vicinity of 2θ = 38.758° of β phase and (c) in the vicinity of 2θ = 40.177° of α phase.
Empty Cell | 1st strong peak of β phase | 1st strong peak of α phase | Empty Cell | ||
---|---|---|---|---|---|
Specimens | 2θ (°) | d(110) (Å) | 2θ (°) | d(101) (Å) | β phase (wt%)/ α phase (wt%) |
Stanard | 38.758 | 2.3214 | 40.177 | 2.2427 | / |
Ti-7.5Mo | 39.04 | 2.3089 | 40.02 | 2.2546 | 42.2/ 57.8 |
Ti-7.5Mo-2.4TiC | 39.10 | 2.3055 | 40.02 | 2.2547 | 68.1/ 31.9 |
Table 2. Quantitative XRD data revealing the shifting of 2θ peaks and variation of inter-planar spacing, and weight fractions of α and β phase in SLM-fabricated Ti-7.5Mo alloys and in-situ Ti-7.5Mo-2.4TiC composites.
Empty Cell | 1st strong peak of β phase | 1st strong peak of α phase | Empty Cell | ||
---|---|---|---|---|---|
Specimens | 2θ (°) | d(110) (Å) | 2θ (°) | d(101) (Å) | β phase (wt%)/ α phase (wt%) |
Stanard | 38.758 | 2.3214 | 40.177 | 2.2427 | / |
Ti-7.5Mo | 39.04 | 2.3089 | 40.02 | 2.2546 | 42.2/ 57.8 |
Ti-7.5Mo-2.4TiC | 39.10 | 2.3055 | 40.02 | 2.2547 | 68.1/ 31.9 |
Fig. 7. (a, b) BSE/SE-SEM images showing the typical morphology of TiC particles in SLM-fabricated in-situ Ti-7.5Mo-2.4TiC composites and (c-e) their size distribution.
Fig. 8. Transient temperature contour plots of the molten pool of (a) Ti-7.5Mo alloys and (b) Ti-7.5Mo-2.4TiC composites during SLM with paths assigned to monitor the temperature and temperature gradient.
Fig. 9. Temperature distribution along typical orientations within the molten pool of Ti-7.5Mo alloys and in-situ Ti-7.5Mo-2.4TiC composites fabricated by SLM.
Fig. 11. (a) Engineering compressive stress-strain curves of SLM-fabricated Ti-7.5Mo alloys and in-situ Ti-7.5Mo-2.4TiC composites in as-built condition, and (b) their mechanical properties with a comparison to other Ti-Mo counterparts: 1# Ti-7.5Mo alloys in this work, 2# Ti-7.5Mo alloys by SLM elsewhere [26], 3# Ti-7.5Mo alloys by casting+rolling [55], 4# Ti-7.5Mo alloys by casting+ageing [56], 5# Ti-7.5Mo alloys by casting [54], 6# in-situ Ti-10Mo-1TiC composites by SLM [17], 7# in -situ Ti-10Mo-3TiC composites by SLM [57], and 8# in-situ Ti-7.5Mo-2.4TiC composites in this work.
Fig. 13. (a) Records of lowest ceramic ball positions during 2000 wear cycles and (b) wear properties including wear scar depth, wear scar width and wear rate of SLM-fabricated Ti-7.5Mo alloys and in-situ Ti-7.5Mo-2.4TiC composites.
Fig. 14. SE-SEM images showing worn surface morphologies on (a, b) Ti-7.5Mo alloys and (c, d) in-situ Ti-7.5Mo-2.4TiC composites fabricated by SLM. The inset in (d) illustrates well bonded TiC particles with the Ti matrix.
[1] |
L.C. Zhang, H. Attar, Adv. Eng. Mater. 18 (2016) 463-475.
DOI URL |
[2] |
A. Nouri, A. Rohani Shirvan, Y. Li, C. Wen, J. Mater. Sci. Technol. 94 (2021) 196-215.
DOI URL |
[3] | D. Ren, S. Li, H. Wang, W. Hou, Y. Hao, W. Jin, R. Yang, R.D.K. Misra, L.E. Murr, J. Mater. Sci. Technol. 35 (2019) 285-294. |
[4] |
C. Cai, X. Wu, W. Liu, W. Zhu, H. Chen, J.C.D. Qiu, C.N. Sun, J. Liu, Q. Wei, Y. Shi, J. Mater. Sci. Technol. 57 (2020) 51-64.
DOI URL |
[5] |
J.E. Bechtold, Orthop. Clin. North Am. 17 (1986) 605-612.
DOI URL |
[6] |
N. De Meurechy, A. Braem, M.Y. Mommaerts, Int. J. Oral Maxillofac. Surg. 47 (2018) 518-533.
DOI URL |
[7] |
B. Mjöberg, E. Hellquist, H. Mallmin, U. Lindh, Acta Orthop. Scand. 68 (1997) 511-514.
PMID |
[8] |
I. Zwolak, Toxicol. Mech. Methods 24 (2014) 1-12.
DOI URL |
[9] | N. Kang, X. Lin, M.E. Mansori, Q.Z. Wang, J.L. Lu, C. Coddet, W.D. Huang, Addit. Manuf. 31 (2020) 100911. |
[10] |
A. Almeida, D. Gupta, C. Loable, R. Vilar, Mater. Sci. Eng. C 32 (2012) 1190-1195.
DOI URL |
[11] | W.D. Zhang, Y. Liu, H. Wu, M. Song, T.Y. Zhang, X.D. Lan, T.H. Yao, Mater. Char-act. 106 (2015) 302-307. |
[12] |
W. Xu, M. Chen, X. Lu, D.W. Zhang, H.P. Singh, J.S. Yu, Y. Pan, X.H. Qu, C.Z. Liu, Corros. Sci. 168 (2020) 108557.
DOI URL |
[13] |
N.T.C. Oliveira, A.C. Guastaldi, Acta Biomater. 5 (2009) 399-405.
DOI PMID |
[14] |
W.F. Ho, C.P. Ju, J.H.C. Lin, Biomaterials 20 (1999) 2115-2122.
PMID |
[15] |
N. Li, S. Huang, G. Zhang, R. Qin, W. Liu, H. Xiong, G. Shi, J. Blackburn, J. Mater. Sci. Technol. 35 (2019) 242-269.
DOI URL |
[16] | J. Vishnu, G. Manivasagam, J. Bio, Tribo. Corros. 7 (2021) 32. |
[17] |
B. Vrancken, S. Dadbakhsh, R. Mertens, K. Vanmeensel, J. Vleugels, S. Yang, J.P. Kruth, CIRP Ann. 68 (2019) 221-224.
DOI URL |
[18] |
M.H. Mosallanejad, B. Niroumand, A. Aversa, A. Saboori, J. Alloy. Compd. 872 (2021) 159567.
DOI URL |
[19] | R. Duan, S. Li, B. Cai, W. Zhu, F. Ren, M.M. Attallah, Addit. Manuf. 37 (2021) 101708. |
[20] |
Q. Shi, R. Mertens, S. Dadbakhsh, G. Li, S. Yang, J. Mater. Process. Technol. 299 (2022) 117357.
DOI URL |
[21] |
P. Fischer, V. Romano, H.P. Weber, N.P. Karapatis, E. Boillat, R. Glardon, Acta Mater. 51 (2003) 1651-1662.
DOI URL |
[22] |
Y.B. Liu, Y. Liu, H.P. Tang, B. Wang, B. Liu, J. Mater. Sci. 46 (2011) 902-909.
DOI URL |
[23] |
S.C. Tjong, Adv. Eng. Mater. 9 (2007) 639-652.
DOI URL |
[24] | C. Han, R. Babicheva, J.D.Q. Chua, U. Ramamurty, S.B. Tor, C.N. Sun, K. Zhou, Addit. Manuf. 36 (2020) 101466. |
[25] |
N. Kang, X. Lin, C. Coddet, X. Wen, W. Huang, Mater. Lett. 267 (2020) 127544.
DOI URL |
[26] |
N. Kang, Y. Li, X. Lin, E. Feng, W. Huang, J. Alloy. Compd. 771 (2019) 877-884.
DOI |
[27] |
H. Attar, K.G. Prashanth, L.C. Zhang, M. Calin, I.V. Okulov, S. Scudino, C. Yang, J. Eckert, J. Mater. Sci. Technol. 31 (2015) 1001-1005.
DOI URL |
[28] |
K. Lin, Y. Fang, D. Gu, Q. Ge, J. Zhuang, L. Xi, Adv. Powder Technol. 32 (2021) 1426-1437.
DOI URL |
[29] |
X. Ji, S. Emura, T. Liu, K. Suzuta, X. Min, K. Tsuchiya, J. Alloy. Compd. 737 (2018) 221-229.
DOI URL |
[30] |
T.W. Na, W.R. Kim, S.M. Yang, O. Kwon, J.M. Park, G.H. Kim, K.H. Jung, C.W. Lee, H.K. Park, H.G. Kim, Mater. Charact. 143 (2018) 110-117.
DOI URL |
[31] |
J. Geng, Z. Zhu, Y. Ni, H. Li, F. Cheng, F. Li, J. Chen, Nano Res. 15 (2022) 280-284.
DOI URL |
[32] |
Q. Shi, D. Gu, M. Xia, S. Cao, T. Rong, Opt. Laser Technol. 84 (2016) 9-22.
DOI URL |
[33] | D. Gu, Q. Shi, K. Lin, L. Xi, Addit. Manuf. 22 (2018) 265-278. |
[34] | Y. Li, D. Gu, Addit. Manuf. 1 (2014) 99-109-4. |
[35] |
K.H. Leitz, P. Singer, A. Plankensteiner, B. Tabernig, H. Kestler, L.S. Sigl, Met. Powder Rep. 72 (2017) 331-338.
DOI URL |
[36] |
J.P. Kruth, X. Wang, T. Laoui, L. Froyen, Assem. Autom. 23 (2003) 357-371.
DOI URL |
[37] |
S.H. Koutzaki, J.E. Krzanowski, J.J. Nainaparampil, Metall. Mater. Trans. A 33 (2002) 1579-1588.
DOI URL |
[38] |
S. Malinov, P. Markovsky, W. Sha, Z. Guo, J. Alloy. Compd. 314 (2001) 181-192.
DOI URL |
[39] |
S. Malinov, W. Sha, Z. Guo, C.C. Tang, A.E. Long, Mater. Charact. 48 (2002) 279-295.
DOI URL |
[40] |
D. Bandyopadhyay, B. Haldar, R.C. Sharma, N. Chakraborti, J. Phase Equilib. 20 (1999) 332-336.
DOI URL |
[41] |
X. Zhao, M. Niinomi, M. Nakai, J. Hieda, Acta Biomater. 8 (2012) 1990-1997.
DOI URL |
[42] |
B. Vrancken, L. Thijs, J.P. Kruth, J. Van Humbeeck, Acta Mater. 68 (2014) 150-158.
DOI URL |
[43] |
D. Zhao, C. Han, J. Li, J. Liu, Q. Wei, Mater. Sci. Eng. C 111 (2020) 110784.
DOI URL |
[44] |
D. Zhao, C. Han, Y. Li, J. Li, K. Zhou, Q. Wei, J. Liu, Y. Shi, J. Alloy. Compd. 804 (2019) 288-298.
DOI URL |
[45] |
S. Dadbakhsh, R. Mertens, L. Hao, J. Van Humbeeck, J.P. Kruth, Adv. Eng. Mater. 21 (2019) 1801244.
DOI URL |
[46] |
Q.M. Shi, D.D. Gu, K.J. Lin, W.H. Chen, M.J. Xia, D.H. Dai, J. Manuf. Sci. Eng. 140 (2018) 111019.
DOI URL |
[47] |
W. Kurz, D.J. Fisher, Acta Metall. 29 (1981) 11-20.
DOI URL |
[48] |
G. Liu, K. Chen, H. Zhou, J. Guo, K. Ren, J.M.F. Ferreira, Mater. Lett. 61 (2007) 779-784.
DOI URL |
[49] |
D. Gu, Y. Shen, G. Meng, Mater. Lett. 63 (2009) 2536-2538.
DOI URL |
[50] |
J.W. Garvin, H.S. Udaykumar, J. Cryst. Growth 267 (2004) 724-737.
DOI URL |
[51] |
L. Hadji, Scr. Mater. 48 (2003) 665-669.
DOI URL |
[52] |
D. Gu, H. Zhang, D. Dai, M. Xia, C. Hong, R. Poprawe, Compos. B Eng. 163 (2019) 585-597.
DOI URL |
[53] |
L.Y. Chen, J.Q. Xu, H. Choi, M. Pozuelo, X. Ma, S. Bhowmick, J.M. Yang, S. Math-audhu, X.C. Li, Nature 528 (2015) 539-543.
DOI URL |
[54] |
W.F. Ho, J. Alloy. Compd. 464 (2008) 580-583.
DOI URL |
[55] |
C.C. Chung, S.W. Wang, Y.C. Chen, C.P. Ju, J.H. Chern Lin, Mater. Sci. Eng. A 631 (2015) 52-66.
DOI URL |
[56] |
Y.C. Chen, J.H.C. Lin, C.P. Ju, Mater. Des. 54 (2014) 515-519.
DOI URL |
[57] | S. Dadbakhsh, R. Mertens, G. Ji, B. Vrancken, K. Vanmeensel, H. Fan, A. Addad, J.P. Kruth, Addit. Manuf. 36 (2020) 101577. |
[58] |
F. Akhtar, Can. Metall. Q. 53 (2014) 253-263.
DOI URL |
[59] |
K.I. Parashivamurthy, R.K. Kumar, S. Seetharamu, M.N. Chandrasekharaiah, J. Mater. Sci. 36 (2001) 4519-4530.
DOI URL |
[1] | Gwanghyo Choi, Won Seok Choi, Yoon Sun Lee, Dahye Kim, Ji Hyun Sung, Seungjun An, Chang-Seok Oh, Amine Hattal, Madjid Djemai, Brigitte Bacroix, Guy Dirras, Pyuck-Pa Choi. Decomposition behavior of yttria-stabilized zirconia and its effect on directed energy deposited Ti-based composite material [J]. J. Mater. Sci. Technol., 2022, 112(0): 138-150. |
[2] | Ł. Maj, D. Wojtas, A. Jarzębska, M. Bieda, K. Trembecka-Wójciga, R. Chulist, W. Kozioł, A. Góral, A. Trelka, K. Janus, J. Kawałko, M. Kulczyk, F. Muhaffel, H. Çimenoğlu, K. Sztwiertnia. Titania coating formation on hydrostatically extruded pure titanium by micro-arc oxidation method [J]. J. Mater. Sci. Technol., 2022, 111(0): 224-235. |
[3] | Pengsheng Xue, Lida Zhu, Jinsheng Ning, Peihua Xu, Shuhao Wang, Zhichao Yang, Yuan Ren, Guiru Meng. The crystallographic texture and dependent mechanical properties of the CrCoNi medium-entropy alloy by laser remelting strategy [J]. J. Mater. Sci. Technol., 2022, 111(0): 245-255. |
[4] | Yanfang Wang, Xin Lin, Nan Kang, Zihong Wang, Yuxi Liu, Weidong Huang. Influence of post-heat treatment on the microstructure and mechanical properties of Al-Cu-Mg-Zr alloy manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 111(0): 35-48. |
[5] | Likui Zhang, Yao Chen, Qian Liu, Wenting Deng, Yaoqun Yue, Fanbin Meng. Ultrathin flexible electrospun carbon nanofibers reinforced graphene microgasbags films with three-dimensional conductive network toward synergetic enhanced electromagnetic interference shielding [J]. J. Mater. Sci. Technol., 2022, 111(0): 57-65. |
[6] | Duoduo Wang, Qunbo Fan, Xingwang Cheng, Yu Zhou, Ran Shi, Yan Qian, Le Wang, Xinjie Zhu, Haichao Gong, Kai Chen, Jingjiu Yuan, Liu Yang. Texture evolution and slip mode of a Ti-5.5Mo-7.2Al-4.5Zr-2.6Sn-2.1Cr dual-phase alloy during cold rolling based on multiscale crystal plasticity finite element model [J]. J. Mater. Sci. Technol., 2022, 111(0): 76-87. |
[7] | Vioni Dwi Sartika, Won Seok Choi, Gwanghyo Choi, Jaewook Han, Sung-Jin Chang, Won-Seok Ko, Blazej Grabowski, Pyuck-Pa Choi. Joining dissimilar metal of Ti and CoCrMo using directed energy deposition [J]. J. Mater. Sci. Technol., 2022, 111(0): 99-110. |
[8] | Lixia Ma, Min Wan, Weidong Li, Jie Shao, Xiaoning Han, Jichun Zhang. On the superplastic deformation mechanisms of near-α TNW700 titanium alloy [J]. J. Mater. Sci. Technol., 2022, 108(0): 173-185. |
[9] | Juan Li, Yaqun Xu, Wenlong Xiao, Chaoli Ma, Xu Huang. Development of Ti-Al-Ta-Nb-(Re) near-α high temperature titanium alloy: Microstructure, thermal stability and mechanical properties [J]. J. Mater. Sci. Technol., 2022, 109(0): 1-11. |
[10] | Cheng Li, Guanhong Lei, Jizhao Liu, Awen Liu, C.L. Ren, Hefei Huang. A potential candidate structural material for molten salt reactor: ODS nickel-based alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 129-139. |
[11] | Jing Wu, Meng Li, Chuanchuan Lin, Pengfei Gao, Rui Zhang, Xuan Li, Jixi Zhang, Kaiyong Cai. Moderated crevice corrosion susceptibility of Ti6Al4V implant material due to albumin-corrosion interaction [J]. J. Mater. Sci. Technol., 2022, 109(0): 209-220. |
[12] | Donghai Li, Binbin Wang, Liangshun Luo, Xuewen Li, Yanjin Xu, BinQiang Li, Diween Hawezy, Liang Wang, Yanqing Su, Jingjie Guo, Hengzhi Fu. Effect of processing parameters on the microstructure and mechanical properties of TiAl/Ti2AlNb laminated composites [J]. J. Mater. Sci. Technol., 2022, 109(0): 228-244. |
[13] | Mohammed Arroussi, Qing Jia, Chunguang Bai, Shuyuan Zhang, Jinlong Zhao, Zhizhou Xia, Zhiqiang Zhang, Ke Yang, Rui Yang. Inhibition effect on microbiologically influenced corrosion of Ti-6Al-4V-5Cu alloy against marine bacterium Pseudomonas aeruginosa [J]. J. Mater. Sci. Technol., 2022, 109(0): 282-296. |
[14] | Xuehui Yan, Peter K. Liaw, Yong Zhang. Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates [J]. J. Mater. Sci. Technol., 2022, 110(0): 109-116. |
[15] | Jianwen Le, Yuanfei Han, Peikun Qiu, Shaopeng Li, Guangfa Huang, Jianwei Mao, Weijie Lu. Insight into the formation mechanism and interaction of matrix/TiB whisker textures and their synergistic effect on property anisotropy in titanium matrix composites [J]. J. Mater. Sci. Technol., 2022, 110(0): 1-13. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||