J. Mater. Sci. Technol. ›› 2022, Vol. 114: 62-72.DOI: 10.1016/j.jmst.2021.10.004
• Research Article • Previous Articles Next Articles
Received:
2021-08-05
Revised:
2021-09-29
Accepted:
2021-10-01
Published:
2022-07-01
Online:
2022-01-05
Contact:
Shuizhou Cai
About author:
*E-mail address: szcai@hust.edu.cn (S. Cai).Aobo Hu, Shuizhou Cai. Spatial phase structure and oxidation process of Al-W alloy powder with high sphericity[J]. J. Mater. Sci. Technol., 2022, 114: 62-72.
Fig. 1. SEM photographs of the Al-30W alloy powder prepared by high-temperature gas atomization ((b) is the magnification of the area selected in (a)).
Al | W | Mo | Cu | Y | Co | Fe |
---|---|---|---|---|---|---|
94.0581 | 5.7615 | 0.0840 | 0.0321 | 0.0229 | 0.0227 | 0.0187 |
Table 1. Atomic ratios of the elements contained in the Al-30W alloy powder.
Al | W | Mo | Cu | Y | Co | Fe |
---|---|---|---|---|---|---|
94.0581 | 5.7615 | 0.0840 | 0.0321 | 0.0229 | 0.0227 | 0.0187 |
Fig. 13. SEM photographs and EDS spectra of single particle cross section of the Al-30W alloy powder (backscattered electron image, (a) is the intermediate state from Al12W to Al5W, (b) is the 750 °C heat-treated product).
Position number | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Atomic ratio (Al : W) | 92.52 : 7.48 | 83.09 : 16.91 | 99.81 : 0.19 | 82.36 : 17.65 |
Table 2. EDS point scanning results for the phases located at four different positions in Fig. 13.
Position number | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Atomic ratio (Al : W) | 92.52 : 7.48 | 83.09 : 16.91 | 99.81 : 0.19 | 82.36 : 17.65 |
Fig. 14. SEM photographs and EDS spectra of single particle cross section of the Al-30W alloy powder (backscattered electron image, (a) is the intermediate state from Al5W to Al4W, (b) is the 900 °C heat-treated product).
Position number | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Atomic ratio (Al : W) | 79.61 : 20.39 | 83.52 : 16.48 | 99.56 : 0.44 | 80.18 : 19.82 |
Table 3. EDS point scanning results for the phases located at four different positions in Fig. 14.
Position number | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Atomic ratio (Al : W) | 79.61 : 20.39 | 83.52 : 16.48 | 99.56 : 0.44 | 80.18 : 19.82 |
Fig. 16. In-situ SEM photographs of the oxidation product of the Al-30W alloy powder at 1100 °C ((b) is the magnification of the area selected in (a)).
Fig. 18. In-situ SEM photographs of the oxidation product of the Al-30W alloy powder at 1300 °C ((b) is the magnification of the area selected in (a)).
[1] |
B. Palaszewski, R. Powell, J. Propul. Power 10 (1994) 828-833.
DOI URL |
[2] |
D. Hu, Z.M. Sun, Combust. Flame 105 (1996) 428-430.
DOI URL |
[3] |
A. Ingenito, C. Bruno, J. Propul. Power 20 (2004) 1056-1063.
DOI URL |
[4] | A.M. Ismail, B. Osborne, C.S. Welch, J. Br. Interplanet. Soc. 65 (2012) 61-70. |
[5] |
F. Maggi, S. Dossi, C. Paravan, L.T. DeLuca, M. Liljedahl, Powder Technol 270 (2015) 46-52.
DOI URL |
[6] |
C. Fang, S.F. Li, Propellants Explos. Pyrotech. 27 (2002) 34-38.
DOI URL |
[7] |
B.C. Terry, T.R. Sippel, M.A. Pfeil, I.E. Gunduz, S.F. Son, J. Hazard. Mater. 317 (2016) 259-266.
DOI URL |
[8] |
H. Zou, L.F. Li, S.Z. Cai, J. Propul. Power 32 (2015) 32-37.
DOI URL |
[9] |
Y.L. Shoshin, E.L. Dreizin, Combust. Flame 145 (2006) 714-722.
DOI URL |
[10] |
A.B. Hu, H. Zou, W. Shi, A.-m. Pang, S.Z. Cai, Propellants Explos. Pyrotech. 44 (2019) 1454-1465.
DOI URL |
[11] |
A. Ilyin, A. Gromov, V. An, O.F. Faubert, C. de Izarra, A. Espagnacq, L. Brunet, Propellants Explos. Pyrotech. 27 (2002) 361-364.
DOI URL |
[12] |
S. Hasani, M. Panjepour, M. Shamanian, Oxid. Met. 78 (2012) 179-195.
DOI URL |
[13] |
M.A. Trunov, M. Schoenitz, E.L. Dreizin, Combust. Theory Modell. 10 (2006) 603-623.
DOI URL |
[14] |
A.P. Il’In, A.A. Gromov, G.V. Yablunovskii, Yablunovskii, Combust. Explos. Shock Waves 37 (2001) 418-422.
DOI URL |
[15] |
V.A. Babuk, V.A. Vassiliev, V.V. Sviridov, Combust. Sci. Technol. 163 (2001) 261-289.
DOI URL |
[16] |
Y.C. Feng, Z.X. Xia, L.Y. Huang, X.T. Yan, Acta Astronaut 129 (2016) 1-7.
DOI URL |
[17] |
J.T. Moore, S.R. Turns, R.A. Yetter, Combust. Sci. Technol. 177 (2006) 627-669.
DOI URL |
[18] |
M. Schoenitz, E.L. Dreizin, J. Mater. Res. 18 (2003) 1827-1836.
DOI URL |
[19] |
Y. Aly, M. Schoenitz, E.L. Dreizin, Combust. Flame 160 (2013) 835-842.
DOI URL |
[20] |
Y. Aly, E.L. Dreizin, Combust. Flame 162 (2015) 1440-1447.
DOI URL |
[21] |
K.T. Lu, C.C. Yang, Propellants, Explos., Pyrotech 33 (2008) 403-410.
DOI URL |
[22] |
E. Shachar, A. Gany, Propellants Explos. Pyrotech. 22 (1997) 207-211.
DOI URL |
[23] |
P.G. Luo, Z.C. Wang, C.L. Jiang, L. Mao, Q. Li, Mater. Des. 84 (2015) 72-78.
DOI URL |
[24] | X.F. Zhang, A.S. Shi, L. Qiao, J. Zhang, Y.G. Zhang, Z.W. Guan, J. Appl. Phys. 113 (2013) 083508. |
[25] |
X.B. Zhang, J.X. Liu, L. Wang, S.K. Li, S. Zhang, J. Lan, Y.J. Wang, Rare Met. Mater. Eng. 47 (2018) 1723-1728.
DOI URL |
[26] |
C. Ge, W. Maimaitituersun, Y.X. Dong, C. Tian, Materials (Basel) 10 (2017) 452.
DOI URL |
[27] |
M.I. Alymov, S.G. Vadchenko, I.V. Saikov, I.D. Kovalev, Inorg. Mater.: Appl. Res. 8 (2017) 340-343.
DOI URL |
[28] | L. Wang, J.X. Liu, S.K. Li, X.B. Zhang, AIP Adv 5 (2015) 117142. |
[29] |
L. Wang, J.X. Liu, S.K. Li, X.B. Zhang, Mater. Des. 92 (2016) 397-404.
DOI URL |
[30] | N. Radić, T. Car, A. Tonejc, J. Ivkov, M. Stubičar, M. Metikoš-Huković, Phys. Technol. Thin Films (2004) 101-108. |
[31] |
H. Habazaki, P. Skeldon, G.E. Thompson, G.C. Wood, K. Shimizu, Philos. Mag. B 71 (1995) 81-90.
DOI URL |
[32] |
T. Car, N. Radi, J. Ivkov, E. Babić, A. Tonejc, Appl. Phys. A 68 (1999) 69-73.
DOI URL |
[33] |
J. Ivkov, N. Radi´c, A. Tonejc, T. Car, J. Non-Cryst. Solids 319 (2003) 232-240.
DOI URL |
[34] |
T. Car, N. Radic, J. Ivkov, A. Tonejc, Appl. Phys. A 80 (2005) 1087-1092.
DOI URL |
[35] |
M. Stubičar, A. Tonejc, N. Radi, Vacuum 61 (2001) 309-316.
DOI URL |
[36] |
H. Yoshioka, H. Habazaki, A. Kawashima, K. Asami, K. Hashimoto, Corros. Sci. 32 (1991) 313-325.
DOI URL |
[37] |
A. Tonejc, J. Mater. Sci. 7 (1972) 1292-1298.
DOI URL |
[38] |
C. Suryanarayana, J. Mater. Sci. 8 (1973) 760-761.
DOI URL |
[39] | N.I. Varich, R.B. Lyukevich, Izv. Akad. Nauk SSSR Met. 2 (1970) 216-219. |
[40] |
L.G. Raskolenko, A.Y. Gerul’skii, Inorg. Mater. 44 (2008) 30-39.
DOI URL |
[41] |
M. Tsukada, S. Ohfuji, J. Vac. Sci. Technol. A 13 (1995) 2525-2531.
DOI URL |
[42] |
C. Wang, S.H. Liang, Y.H. Jiang, Vacuum 160 (2019) 95-101.
DOI URL |
[43] |
G. Dercz, J. Piątkowski, Solid State Phenom 163 (2010) 161-164.
DOI URL |
[44] |
C.L. Zhang, P. Lv, J. Cai, Y.W. Zhang, H. Xia, Q.F. Guan, J. Alloys Compd. 723 (2017) 258-265.
DOI URL |
[45] |
C.J. Zhu, X.F. Ma, W. Zhao, H.G. Tang, J.M. Yan, S.G. Cai, J. Alloys Compd. 393 (2005) 248-251.
DOI URL |
[46] |
S. Varam, P.V.S.L. Narayana, M.D. Prasad, D. Chakravarty, K.V. Rajulapati, K.B.S. Rao, Philos. Mag. Lett. 94 (2014) 582-591.
DOI URL |
[47] | H.Z. Zhang, P.Z. Feng, F. Akhtar, Sci. Rep. 7 (2017) 12391. |
[48] |
L.F. Li, H. Zou, S.Z. Cai, Mater. Sci. Technol. 32 (2016) 863-870.
DOI URL |
[49] |
H. Fu, H. Zou, S.Z. Cai, Adv. Powder Technol. 27 (2016) 1898-1904.
DOI URL |
[50] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI URL |
[51] |
Y. Pang, D. Sun, Q. Gu, K. Chou, X. Wang, Q. Li, Cryst. Growth Des. 16 (2016) 2404-2415.
DOI URL |
[52] |
Y. Guo, B. Liu, W. Xie, Q. Luo, Q. Li, Scr. Mater. 193 (2021) 127-131.
DOI URL |
[53] |
T. Xie, H. Shi, H. Wang, Q. Luo, Q. Li, K. Chou, J. Mater. Sci. Technol. 97 (2022) 147-155.
DOI URL |
[54] |
Q. Li, X. Lin, Y.Chen Q.Luo, J. Wang, B. Jiang, F. Pan, Int. J. Miner. Metall. Mater. 29 (2022) 32-48.
DOI URL |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||