J. Mater. Sci. Technol. ›› 2022, Vol. 114: 73-80.DOI: 10.1016/j.jmst.2021.11.019
• Research Article • Previous Articles Next Articles
He Zhoua, Dekun Wanga, Zhe Lib, Junzhuang Congc, Ziyuan Yua, Shuo Zhaoa, Peng Jianga, Daoyong Congd, Xinqi Zhenga, Kaiming Qiaoa, Hu Zhanga,*()
Received:
2021-06-28
Revised:
2021-11-14
Accepted:
2021-11-22
Published:
2022-07-01
Online:
2022-01-15
Contact:
Hu Zhang
About author:
* zhanghu@ustb.edu.cn (H. Zhang).1These authors contributed equally to this work.
He Zhou, Dekun Wang, Zhe Li, Junzhuang Cong, Ziyuan Yu, Shuo Zhao, Peng Jiang, Daoyong Cong, Xinqi Zheng, Kaiming Qiao, Hu Zhang. Large enhancement of magnetocaloric effect induced by dual regulation effects of hydrostatic pressure in Mn0.94Fe0.06NiGe compound[J]. J. Mater. Sci. Technol., 2022, 114: 73-80.
Fig. 1. TiNiSi-type orthorhombic crystal structure of Mn1-xFexNiGe compounds with indicated Ni-6Mn local configurations (light pink zone) and Ni-6Mn/Fe local configurations (light blue zone). The arrows on Mn and Fe atoms illustrate the magnetic moments.
Fig. 2. (a) The contour plot of temperature dependent of the XRD patterns for Mn0.94Fe0.06NiGe compound. (b) The observed and refined powder XRD patterns of Mn0.94Fe0.06NiGe compound at 300 K. The inset shows the unit cell volume as a function of temperature. (c) DSC heat flow curves for Mn0.94Fe0.06NiGe compound. (d) The temperature dependences of ZFC and FC magnetizations under 0.05 T for Mn0.94Fe0.06NiGe compound.
Fig. 3. (a) The temperature dependences of ZFC (solid symbol) and FC (open symbol) magnetizations under 0.05 T for Mn0.94Fe0.06NiGe compound at different applied pressures. The inset shows the Tstr as a function of pressure for Mn0.94Fe0.06NiGe compound. (b) The temperature dependences of FC magnetizations under 3 T for Mn0.94Fe0.06NiGe compound at various applied pressures. The inset shows the dM/dT as a function of temperature.
Fig. 4. Magnetization isotherms with magnetizing and demagnetizing processes for Mn0.94Fe0.06NiGe compound under (a) 0 GPa and (b) 0.402 GPa. (c) The magnetization isotherms of Mn0.94Fe0.06NiGe compound under different applied pressures at 260 K. The inset shows the μ0Hcr as a function of pressure for Mn0.94Fe0.06NiGe compound.
Fig. 5. The crystal structures of (a) hexagonal supercell and (b) orthorhombic supercell for Mn0.9375Fe0.0625NiGe. (c) The total and partial DOS of orthorhombic structure. (d) The Ecoh as a function of V/V0 for hexagonal and orthorhombic structures.
Structure | Model | Lattice parameters (Å) | V (Å3) | Etot (eV/atom) | ||
---|---|---|---|---|---|---|
a | b | c | ||||
Hexagonal | NSP | 8.130 | 8.130 | 9.984 | 571.565 | -6.350 |
SP | 8.173 | 8.173 | 10.503 | 607.592 | -6.524 | |
Orthorhombic | NSP | 11.810 | 7.296 | 6.912 | 595.642 | -6.282 |
SP | 12.036 | 7.435 | 7.045 | 630.455 | -6.526 |
Table 1. Calculated lattice parameters, cell volume (V) and total energy (Etot) of the optimized structural models for the hexagonal and orthorhombic structures of Mn0.9375Fe0.0625NiGe.
Structure | Model | Lattice parameters (Å) | V (Å3) | Etot (eV/atom) | ||
---|---|---|---|---|---|---|
a | b | c | ||||
Hexagonal | NSP | 8.130 | 8.130 | 9.984 | 571.565 | -6.350 |
SP | 8.173 | 8.173 | 10.503 | 607.592 | -6.524 | |
Orthorhombic | NSP | 11.810 | 7.296 | 6.912 | 595.642 | -6.282 |
SP | 12.036 | 7.435 | 7.045 | 630.455 | -6.526 |
Fig. 6. Temperature dependences of -ΔS under a field change of 0-3 T for Mn0.94Fe0.06NiGe compound under different applied pressures. The inset shows the magnetic field dependences of maximum -ΔS value for Mn0.94Fe0.06NiGe compound under different applied pressures.
[1] | S. Singh, R. Rawat, S.E. Muthu, S.W. D’Souza, E. Suard, A. Senyshyn, S. Banik, P. Rajput, S. Bhardwaj, A.M. Awasthi, R. Ranjan, S. Arumugam, D.L. Schlagel, T.A. Lograsso, A. Chakrabarti, S.R. Barman, Phys. Rev. Lett. 109 (2012) 246601. |
[2] |
A. Biswas, A .K. Pathak, N.A. Zarkevich, X.B. Liu, Y. Mudryk, V. Balema, D.D. Johnson, V.K. Pecharsky, Acta Mater 180 (2019) 341-348.
DOI URL |
[3] |
J. Liu, T. Gottschall, K.P. Skokov, J.D. Moore, O. Gutfleisch, Nat. Mater. 11 (2012) 620-626.
DOI URL |
[4] |
C.L. Zhang, H.F. Shi, Y.G. Nie, E.J. Ye, J.H. Wen, Z.D. Han, D.H. Wang, J. Alloy. Compd. 784 (2019) 16-21.
DOI URL |
[5] |
J. Liu, Y.Y. Gong, F.Q. Zhang, Y.R. You, G.Z. Xu, X.F. Miao, F. Xu, J. Mater. Sci. Technol. 76 (2021) 104-110.
DOI URL |
[6] | I. Dubenko, A.K. Pathak, S. Stadler, N. Ali, Y. Kovarskii, V.N. Prudnikov, N.S. Perov, A.B. Granovsky, Phys. Rev. B 80 (2009) 092408. |
[7] | N.T. Trung, L. Zhang, L. Caron, K.H.J. Buschow, E. Brück, Appl. Phys. Lett. 96 (2010) 172504. |
[8] |
Y.W. Li, H. Zhang, K. Tao, Y.X. Wang, M.L. Wu, Y. Long, Mater. Des. 114 (2017) 410-415.
DOI URL |
[9] | Z.Y. Wei, E.K. Liu, Y. Li, G.Z. Xu, X.M. Zhang, G.D. Liu, X.K. Xi, H.W. Zhang, W.H. Wang, G.H. Wu, X.X. Zhang, Adv. Electron. Mater. 1 (2015) 150 0 076. |
[10] |
W. Bażela, A. Szytuła, J. todorović, Z. Tomkowicz, A. Zieba, Phys. Stat. Sol. A 38 (1976) 721-729.
DOI URL |
[11] |
W. Bazela, A. Szytula, J. Todorovic, A. Zieba, Phys. Stat. Sol. A 64 (1981) 367-378.
DOI URL |
[12] |
E.K. Liu, W.H. Wang, L. Feng, W. Zhu, G.J. Li, J.L. Chen, H.W. Zhang, G.H. Wu, C.B. Jiang, H.B. Xu, F. de Boer, Nat. Commun. 3 (2012) 873.
DOI URL |
[13] | A. Taubel, T. Gottschall, M. Fries, T. Faske, K.P. Skokov, O. Gutfleisch, J. Phys. D Appl. Phys. 50 (2017) 464005. |
[14] | E.K. Liu, H.G. Zhang, G.Z. Xu, X.M. Zhang, R.S. Ma, W.H. Wang, J.L. Chen, H.W. Zhang, G.H. Wu, L. Feng, X.X. Zhang, Appl. Phys. Lett. 102 (2013) 122405. |
[15] |
J. Liu, Y.Y. Gong, Y.R. You, X.M. You, B.W. Huang, X.F. Miao, G.Z. Xu, F. Xu, E Brück, Acta Mater. 174 (2019) 450-458.
DOI URL |
[16] |
A. Aryal, A. Quetz, S. Pandey, T. Samanta, I. Dubenko, M. Hill, D. Mazumdar, S. Stadler, N. Ali, J. Alloy. Compd. 709 (2017) 142-146.
DOI URL |
[17] |
A. Aryal, A. Quetz, C.F. Sánchez-Valdés, P.J. Ibarra-Gaytán, S. Pandey, I. Dubenko, J.L.S. Llamazares, S. Stadler, N. Ali, Intermetallics 97 (2018) 89-94.
DOI URL |
[18] | J.H. Chen, A. Trigg, T. Poudel Chhetri, D.P. Young, I. Dubenko, N. Ali, S. Stadler, J. Appl. Phys. 127 (2020) 213901. |
[19] | C.L. Zhang, Z.D. Han, B. Qian, H.F. Shi, C. Zhu, J. Chen, T.Z. Wang, J. Appl. Phys. 114 (2013) 153907. |
[20] | C.L. Zhang, D.H. Wang, Q.Q. Cao, Z.D. Han, H.C. Xuan, Y.W. Du, Appl. Phys. Lett. 93 (2008) 122505. |
[21] | A. Aryal, S. Bakkar, H. Samassekou, S. Pandey, I. Dubenko, S. Stadler, N. Ali, D. Mazumdar, J. Alloy. Compd. 823 (2020) 153770. |
[22] | K. Xu, Z. Li, E.K. Liu, H.C. Zhou, Y.L. Zhang, C. Jing, Sci. Rep. 7 (2017) 41675. |
[23] | S.C. Ma, K. Liu, C.C. Ma, Q. Ge, J.T. Zhang, Y.F. Hu, E.K. Liu, Z.C. Zhong, Appl. Phys. Lett. 111 (2017) 232404. |
[24] | L. Morellon, Z. Arnold, C. Magen, C. Ritter, O. Prokhnenko, Y. Skorokhod, P.A. Algarabel, M.R. Ibarra, J. Kamarad, Phys. Rev. Lett. 93 (2004) 137201. |
[25] | T. Samanta, D.L. Lepkowski, A .U. Saleheen, A. Shankar, J. Prestigiacomo, I. Dubenko, A. Quetz, I.W.H. Oswald, G.T. McCandless, J.Y. Chan, P.W. Adams, D.P. Young, N. Ali, S. Stadler, Phys. Rev. B 91 (2015) 020401R. |
[26] | V.K. Sharma, M.K. Chattopadhyay, S.B. Roy, J. Phys. Condens. Matter 23 (2011) 366001. |
[27] | P. Dutta, S. Pramanick, D. Das, S. Chatterjee, J. Phys. D Appl. Phys. 49 (2016) 385001. |
[28] | L. Caron, N.T. Trung, E. Brück, Phys. Rev. B 84 (2011) 020414. |
[29] | R.R. Wu, L.F. Bao, F.X. Hu, H. Wu, Q.Z. Huang, J. Wang, X.L. Dong, G.N. Li, J.R. Sun, F.R. Shen, T.Y. Zhao, X.Q. Zheng, L.C. Wang, Y. Liu, W.L. Zuo, Y.Y. Zhao, M. Zhang, X.C. Wang, C.Q. Jin, G.H. Rao, X.F. Han, B.G. Shen, Sci. Rep. 5 (2015) 18027. |
[30] | Q.Q. Zeng, J.L. Shen, E.K. Liu, X.K. Xi, W.H. Wang, G.H. Wu, X.X. Zhang, Chin. Phys. Lett. 37 (2020) 076101. |
[31] |
S. Anzai, K. Ozawa, Phys. Rev. B 18 (1978) 2173-2178.
DOI URL |
[32] |
F.R. Shen, H.B. Zhou, F.X. Hu, J.T. Wang, H. Wu, Q.Z. Huang, J.Z. Hao, Z.B. Yu, Y.H. Gao, Y. Lin, Y.X. Wang, C. Zhang, Z. Yin, J. Wang, S.H. Deng, J. Chen, L.H. He, T.J. Liang, J.R. Sun, T.Y. Zhao, B.G. Shen, J. Am. Chem. Soc. 143 (2021) 6798-6804.
DOI URL |
[33] | B.A. Hunter, Rietica, in a visual rietveld program, international union of crys- tallography commission on powder diffraction newsletter, 20 (1998) 21. |
[34] |
M. Mito, K. Matsumoto, Y. Komorida, H. Deguchi, S. Takagi, T. Tajiri, T. Iwamoto, T. Kawae, M. Tokita, K. Takeda, J. Phys. Chem. Solids 70 (2009) 1290-1296.
DOI URL |
[35] |
J. Hafner, Comput. Phys. Commun. 177 (2007) 6-13.
DOI URL |
[36] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.
DOI URL PMID |
[37] |
G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758-1775.
DOI URL |
[38] |
M. Methfessel, A.T. Paxton, Phys. Rev. B 40 (1989) 3616-3621.
URL PMID |
[39] | A. Aznar, P. Lloveras, J.Y. Kim, E. Stern-Taulats, M. Barrio, J.L. Tamarit, C.F. Sanchez-Valdes, J.L. Sanchez Llamazares, N.D. Mathur, X. Moya, Adv. Mater. 31 (2019) 1903577. |
[40] | F.X. Liang, F.R. Shen, Y. Liu, J. Li, K.M. Qiao, J. Wang, F.X. Hu, J.R. Sun, B.G. Shen, AIP Adv. 8 (2018) 056417. |
[41] |
L. Caron, Z.Q. Ou, T.T. Nguyen, D.T. Cam Thanh, O. Tegus, E. Brück, J. Magn. Magn. Mater. 321 (2009) 3559-3566.
DOI URL |
[42] |
A. Szytula, A.T. Pedziwiatr, Z. Tomkowicz, W. Bażela, J. Magn. Magn. Mater. 25 (1981) 176-186.
DOI URL |
[43] |
Y.N. Xiao, H. Zhang, Y.L. Zhang, K.W. Long, C.F. Xing, Y.W. Liu, Y. Long, J. Alloy. Compd. 769 (2018) 916-921.
DOI URL |
[44] |
Y. Li, Z.Y. Wei, E.K. Liu, G.D. Liu, S.G. Wang, W.H. Wang, G.H. Wu, J. Appl. Phys. 117 (2015) 17C117.
DOI URL |
[45] | D.S. Sholl, J.A. Steckel, Density Functional Theory: A Practical Introduction, John Wiley & Sons, Hoboken, New Jersey, 2009. |
[46] | K.R. Hahn, E. Assaf, A. Portavoce, S. Bertaina, A. Charaï, J. Phys. Chem. C 121 (2017) 26575-26586. |
[47] | A. Paul, A. Mukherjee, I. Dasgupta, A. Paramekanti, T. Saha-Dasgupta, Phys. Rev. Lett. 122 (2019) 016404. |
[48] | R. Dronskowski, Computational Chemistry of Solid State Materials: A Guide For Materials Scientists, Chemists, Physicists and Others, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2005. |
[49] |
F. Birch, Phys. Rev. 71 (1947) 809-824.
DOI URL |
[50] |
V.K. Pecharsky, K.A. Gschneidner, J. Appl. Phys. 86 (1999) 565-575.
DOI URL |
[51] |
L. Mañosa, D. González-Alonso, A. Planes, E. Bonnot, M. Barrio, J.L. Tamarit, S. Aksoy, M. Acet, Nat. Mater. 9 (2010) 478-481.
DOI URL PMID |
[1] | Liliang Shao, Lin Xue, Qiang Luo, Kuibo Yin, Zirui Yuan, Mingyun Zhu, Tao Liang, Qiaoshi Zeng, Litao Sun, Baolong Shen. Heterogeneous GdTbDyCoAl high-entropy alloy with distinctive magnetocaloric effect induced by hydrogenation [J]. J. Mater. Sci. Technol., 2022, 109(0): 147-156. |
[2] | Renquan Wang, Tingchuan Zhou, Zhiyong Zhong. Low-temperature processing of LiZn-based ferrite ceramics by co-doping of V2O5 and Sb2O3: Composition, microstructure and magnetic properties [J]. J. Mater. Sci. Technol., 2022, 99(0): 1-8. |
[3] | Qingfang Huang, Qingzheng Jiang, Jifan Hu, Sajjad Ur Rehman, Gang Fu, Qichen Quan, Jixiang Huang, Deqin Xu, Dakun Chen, Zhenchen Zhong. Extraordinary simultaneous enhancement of the coercivity and remanence of dual alloy HRE‐free Nd‐Fe‐B sintered magnets by post‐sinter annealing [J]. J. Mater. Sci. Technol., 2022, 106(0): 236-242. |
[4] | Rui Liu, Li Liu, Fuhui Wang. The role of hydrostatic pressure on the metal corrosion in simulated deep-sea environments — a review [J]. J. Mater. Sci. Technol., 2022, 112(0): 230-238. |
[5] | Xin Li, Guangcun Shan, C.H. Shek. Machine learning prediction of magnetic properties of Fe-based metallic glasses considering glass forming ability [J]. J. Mater. Sci. Technol., 2022, 103(0): 113-120. |
[6] | Xuefei Miao, Yong Gong, Fengqi Zhang, Yurong You, Luana Caron, Fengjiao Qian, Wenhui Guo, Yujing Zhang, Yuanyuan Gong, Feng Xu, Niels van Dijk, Ekkes Brück. Enhanced reversibility of the magnetoelastic transition in (Mn,Fe)2(P,Si) alloys via minimizing the transition-induced elastic strain energy [J]. J. Mater. Sci. Technol., 2022, 103(0): 165-176. |
[7] | Weibin Cui, Guiquan Yao, Shengyu Sun, Qiang Wang, Sen Yang. Unconventional metamagnetic phase transition in R2In (R=Nd, Pr) with lambda-like specific heat and nonhysteresis [J]. J. Mater. Sci. Technol., 2022, 101(0): 80-84. |
[8] | Yikun Zhang, Jian Zhu, Shuo Li, Jiang Wang Zhongming Ren. Achievement of giant cryogenic refrigerant capacity in quinary rare-earths based high-entropy amorphous alloy [J]. J. Mater. Sci. Technol., 2022, 102(0): 66-71. |
[9] | Xing Tong, Yan Zhang, Yaocen Wang, Xiaoyu Liang, Kai Zhang, Fan Zhang, Yuanfei Cai, Haibo Ke, Gang Wang, Jun Shen, Akihiro Makino, Weihua Wang. Structural origin of magnetic softening in a Fe-based amorphous alloy upon annealing [J]. J. Mater. Sci. Technol., 2022, 96(0): 233-240. |
[10] | Jing Bai, Die Liu, Jianglong Gu, Xinjun Jiang, Xinzeng Liang, Ziqi Guan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Excellent mechanical properties and large magnetocaloric effect of spark plasma sintered Ni-Mn-In-Co alloy [J]. J. Mater. Sci. Technol., 2021, 74(0): 46-51. |
[11] | Pengtao Cheng, Zhenjia Zhou, Jiaxing Chen, Zongbin Li, Bo Yang, Kun Xu, Zhe Li, Jun Li, Zhengming Zhang, Dunhui Wang, Suxin Qian, Youwei Du. Combining magnetocaloric and elastocaloric effects in a Ni45Co5Mn37In13 alloy [J]. J. Mater. Sci. Technol., 2021, 94(0): 47-52. |
[12] | Fandi Meng, Li Liu, Yu Cui, Fuhui Wang. Evaluation of coating resistivity for pigmented/unpigmented epoxy coatings under marine alternating hydrostatic pressure [J]. J. Mater. Sci. Technol., 2021, 64(0): 165-175. |
[13] | Zhipan Ma, Xiaoshi Dong, Zhenqian Zhang, Lingwei Li. Achievement of promising cryogenic magnetocaloric performances in La1-xPrxFe12B6 compounds [J]. J. Mater. Sci. Technol., 2021, 92(0): 138-142. |
[14] | Shuo Li, Longfei Ma, Jinkui Fan, Jianping Yang, Qiang Zheng, Baoru Bian, Jian Zhang, Juan Du. High energy product of isotropic bulk Sm-Co/α-Fe(Co) nanocomposite magnet with multiple hard phases and nanoscale grains [J]. J. Mater. Sci. Technol., 2021, 88(0): 183-188. |
[15] | Xuefeng Liao, Jiasheng Zhang, Jiayi He, Wenbing Fan, Hongya Yu, Xichun Zhong, Zhongwu Liu. Development of cost-effective nanocrystalline multi-component (Ce,La,Y)-Fe-B permanent magnetic alloys containing no critical rare earth elements of Dy, Tb, Pr and Nd [J]. J. Mater. Sci. Technol., 2021, 76(0): 215-221. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||