J. Mater. Sci. Technol. ›› 2022, Vol. 114: 55-61.DOI: 10.1016/j.jmst.2021.12.002
• Research Article • Previous Articles Next Articles
Xin-Yu Maoa, Xiao-Lei Shib,c, Liang-Chuang Zhaia, Wei-Di Liud, Yue-Xing Chene, HanGao f, Meng Lig, De-Zhuang Wanga, Hao Wua, Zhuang-Hao Zhenge, Yi-Feng Wangh,i, Qingfeng Liua,j,*(), Zhi-Gang Chenb,c,*(
)
Received:
2021-10-27
Revised:
2021-11-29
Accepted:
2021-12-08
Published:
2022-07-01
Online:
2022-01-13
Contact:
Qingfeng Liu,Zhi-Gang Chen
About author:
zhigang.chen@qut.edu.au, zhigang.chen@uq.edu.au (Z.-G. Chen).1These authors contribute equally to this work.
Xin-Yu Mao, Xiao-Lei Shi, Liang-Chuang Zhai, Wei-Di Liu, Yue-Xing Chen, HanGao , Meng Li, De-Zhuang Wang, Hao Wu, Zhuang-Hao Zheng, Yi-Feng Wang, Qingfeng Liu, Zhi-Gang Chen. High thermoelectric and mechanical performance in the n-type polycrystalline SnSe incorporated with multi-walled carbon nanotubes[J]. J. Mater. Sci. Technol., 2022, 114: 55-61.
Fig. 1. (a) Schematic diagram of fabricating PbI2-doped polycrystalline SnSe incorporated with MWCNTs. (b) Illustration of the crystal structure of PbI2-doped SnSe incorporated with MWCNTs. (c) Comparison of temperature-dependent ZT of SnSe0.95, Sn0.97Pb0.03Se0.89I0.06, and Sn0.97Pb0.03Se0.89I0.06 + 1 wt% MWCNTs. (d) Vickers hardness of PbI2-doped SnSe with and without MWCNTs.
Fig. 2. (a) XRD and (b) Raman spectrums of 3% PbI2-doped polycrystalline n-SnSe incorporated with different contents of MWCNTs. (c) Scanning electronic microscopy (SEM) image of cracked n-SnSe incorporated with 1 wt% MWCNTs. (d) SEM image of a typical n-SnSe grain with a layered structure. SEM images of micropores found in n-SnSe grains viewed from the in-plane (e) and out-of-plane (f) directions. (g) SEM image of cracked n-SnSe with MWCNTs. (h) Magnified SEM image of MWCNTs on the surface of one n-SnSe grain. (i) Magnified SEM image of MWCNTs linked between two n-SnSe grains.
Fig. 3. (a) Spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM) high-angle annular dark-field (HAADF) image of n-SnSe to show grain boundaries. (b) Corresponding energy dispersive spectroscopy (EDS) maps of Sn, Se, Pb, and I. (c) STEM image of the n-SnSe matrix to show some nanoprecipitates with different contrast from the matrix. (d) TEM image of the contrast interface between n-SnSe matrix and nanoprecipitate. (e) Corresponding selected area electron diffraction (SAED) pattern of (d). (f) High-resolution TEM (HRTEM) image of n-SnSe matrix. (g) HRTEM image of the interfaces between n-SnSe matrix and MWCNT. (h) Corresponding SAED pattern of (g). (i) Calculated spectral lattice thermal conductivity (κs) of n-SnSe with 1 wt% MWCNTs at 300 K using the Debye-Callaway model.
Fig. 4. T-dependent (a) electrical conductivity σ, (b) Seebeck coefficient S, and (c) power factor S2σ of the n-SnSe incorporated with MWCNTs. (d) Electron carrier concentration ne and mobility μ, (e) effective mass m*, and (f) ne-dependent S2σ of n-SnSe incorporated with MWCNTs. All properties are measured or determined along the direction perpendicular to the sintering pressure.
Fig. 5. T-dependent (a) thermal conductivity κ, (b) electronic thermal conductivity κe, and (c) lattice thermal conductivity κl of n-SnSe incorporated with different contents of MWCNTs. (d) 1000/T-dependent κl, (e) T-dependent ZT, and (f) ne-dependent ZT of n-SnSe incorporated with different contents of MWCNTs. All properties are measured or determined along the direction perpendicular to the sintering pressure.
[1] |
Y. Zheng, T.J. Slade, L. Hu, X.Y. Tan, Y. Luo, Z.-.Z. Luo, J. Xu, Q. Yan, M.G. Kanatzidis, Chem. Soc. Rev. 50 (2021) 9022-9054.
DOI URL |
[2] |
S. Roychowdhury, T. Ghosh, R. Arora, M. Samanta, L. Xie, N.K. Singh, A. Soni, J. He, U.V. Waghmare, K. Biswas, Science 371 (2021) 722.
DOI URL PMID |
[3] |
B. Jiang, Y. Yu, J. Cui, X. Liu, L. Xie, J. Liao, Q. Zhang, Y. Huang, S. Ning, B. Jia, B. Zhu, S. Bai, L. Chen, S.J. Pennycook, J. He, Science 371 (2021) 830.
DOI URL |
[4] |
Y. Xiao, L.-.D. Zhao, Science 367 (2020) 1196.
DOI URL PMID |
[5] |
X. Shi, L. Chen, Nat. Mater. 15 (2016) 691-692.
DOI URL |
[6] |
X.-.L. Shi, J. Zou, Z.-.G. Chen, Chem. Rev. 120 (2020) 7399-7515.
DOI URL |
[7] |
Y. Wu, Z. Chen, P. Nan, F. Xiong, S. Lin, X. Zhang, Y. Chen, L. Chen, B. Ge, Y. Pei, Joule 3 (2019) 1276-1288.
DOI URL |
[8] |
X. Zhang, Z. Bu, S. Lin, Z. Chen, W. Li, Y. Pei, Joule 4 (2020) 986-1003.
DOI URL |
[9] | D. Yang, X. Su, J. Li, H. Bai, S. Wang, Z. Li, H. Tang, K. Tang, T. Luo, Y. Yan, J. Wu, J. Yang, Q. Zhang, C. Uher, M.G. Kanatzidis, X. Tang, Adv. Mater. 32 (2020) 2003730. |
[10] | M. Hong, Z.G. Chen, L. Yang, Z.M. Liao, Y.C. Zou, Y.H. Chen, S. Matsumura, J. Zou, Adv. Energy Mater. 8 (2017) 1702333. |
[11] |
C. Zhou, Y.K. Lee, Y. Yu, S. Byun, Z.-.Z. Luo, H. Lee, B. Ge, Y.-.L. Lee, X. Chen, J.Y. Lee, O. Cojocaru-Mirédin, H. Chang, J. Im, S.-.P. Cho, M. Wuttig, V.P. Dravid, M.G. Kanatzidis, I. Chung, Nat. Mater. 20 (2021) 1378-1384.
DOI URL |
[12] |
C. Chang, M. Wu, D. He, Y. Pei, C.-.F. Wu, X. Wu, H. Yu, F. Zhu, K. Wang, Y. Chen, Science 360 (2018) 778-783.
DOI URL |
[13] |
Z.-.G. Chen, L.-.X. Shi, D. Zhao, J. Zou, Prog. Mater. Sci. 97 (2018) 283-346.
DOI URL |
[14] |
B. Qin, D. Wang, X. Liu, Y. Qin, J.-.F. Dong, J. Luo, J.-.W. Li, W. Liu, G. Tan, X. Tang, J.-.F. Li, J. He, L.-.D. Zhao, Science 373 (2021) 556-561.
DOI URL |
[15] |
Y. Liu, M. Calcabrini, Y. Yu, S. Lee, C. Chang, J. David, T. Ghosh, M.C. Spadaro, C. Xie, O. Cojocaru-Mirédin, J. Arbiol, M. Ibáñez, ACS Nano. 16 (2022) 78-88.
DOI URL |
[16] |
X. Lou, S. Li, X. Chen, Q. Zhang, H. Deng, J. Zhang, D. Li, X. Zhang, Y. Zhang, H. Zeng, G. Tang, ACS Nano 15 (2021) 8204-8215.
DOI URL |
[17] |
Y.K. Lee, Z. Luo, S.P. Cho, M.G. Kanatzidis, I. Chung, Joule 3 (2019) 719-731.
DOI URL |
[18] |
J. Liu, P. Wang, M. Wang, R. Xu, J. Zhang, J. Liu, D. Li, N. Liang, Y. Du, G. Chen, Nano Energy 53 (2018) 683-689.
DOI URL |
[19] | X. Shi, Z.-.G. Chen, W. Liu, L. Yang, M. Hong, R. Moshwan, L. Huang, J. Zou, Energy Storage Mater 10 (2018) 130-138. |
[20] | Q. Zhang, E.K. Chere, J. Sun, F. Cao, K. Dahal, S. Chen, G. Chen, Z. Ren, Adv. Energy Mater. 5 (2015) 1500360. |
[21] | A.T. Duong, V.Q. Nguyen, G. Duvjir, V.T. Duong, S. Kwon, J.Y. Song, J.K. Lee, J.E. Lee, S. Park, T. Min, J. Lee, J. Kim, Nat. Commun. 7 (2016) 13713. |
[22] | J. Gainza, F. Serrano-Sánchez, M. Gharsallah, F. Carrascoso, J. Bermúdez, O.J. Dura, F.J. Mompean, N. Biskup, J.J. Meléndez, J.L. Martínez, J.A. Alonso, N.M. Nemes, J. Appl. Phys. 126 (2019) 045105. |
[23] | X.L. Shi, K. Zheng, W.D. Liu, Y. Wang, Y.Z. Yang, Z.G. Chen, J. Zou, Adv. Energy Mater. 8 (2018) 1800775. |
[24] | X.-.L. Shi, X. Tao, J. Zou, Z.-.G. Chen, Adv. Sci. 7 (2020) 1902923. |
[25] | L. Su, T. Hong, D. Wang, S. Wang, B. Qin, M. Zhang, X. Gao, C. Chang, L.-.D. Zhao, Mater. Today Phys 20 (2021) 100452. |
[26] | Z.H. Ge, Y. Qiu, Y.X. Chen, X. Chong, J. Feng, Z.K. Liu, J. He, Adv. Funct. Mater. 29 (2019) 1902893. |
[27] | S. Li, Y. Wang, C. Chen, X. Li, W. Xue, X. Wang, Z. Zhang, F. Cao, J. Sui, X. Liu, Adv. Sci. 5 (2018) 1800598. |
[28] | C. Chang, Q. Tan, Y. Pei, Y. Xiao, X. Zhang, Y.-.X. Chen, L. Zheng, S. Gong, J.-.F. Li, J. He, RSC Adv. 6 (2016) 98216-98220. |
[29] |
X.-.L. Shi, W.-.D. Liu, A.-.Y. Wu, V.T. Nguyen, H. Gao, Q. Sun, R. Moshwan, J. Zou, Z.-.G. Chen, InfoMat 2 (2020) 1201-1215.
DOI URL |
[30] |
X.-.L. Shi, W.-.Y. Chen, X. Tao, J. Zou, Z.-.G. Chen, Mater. Horiz. 7 (2020) 3065-3096.
DOI URL |
[31] |
J. Fu, X. Su, H. Xie, Y. Yan, W. Liu, Y. You, X. Cheng, C. Uher, X. Tang, Nano Energy 44 (2018) 53-62.
DOI URL |
[32] | F. Ren, H. Wang, P.A. Menchhofer, J.O. Kiggans, Appl. Phys. Lett. 103 (2013) 221907. |
[33] | A.-.Q. Xie, J. Guo, L. Zhu, S. Chen, Chem. Eng. J. 415 (2021) 128950. |
[34] |
H.R. Chandrasekhar, R.G. Humphreys, U. Zwick, M. Cardona, Phys. Rev. B 15 (1977) 2177-2183.
DOI URL |
[35] |
V.L. Kuznetsov, S.N. Bokova-Sirosh, S.I. Moseenkov, A.V. Ishchenko, D.V. Kras-nikov, M.A. Kazakova, A.I. Romanenko, E.N. Tkachev, E.D. ObraZTsova, Physica. status solidi. (b) 251 (2014) 2444-2450.
DOI URL |
[36] | X. Shi, A. Wu, W. Liu, R. Moshwan, Y. Wang, Z.-.G. Chen, J. Zou, ACS Nano 12 (2018) 11417-11425. |
[37] |
X.-.L. Shi, W.-.Y. Chen, T. Zhang, J. Zou, Z.-.G. Chen, Energy Environ. Sci. 14 (2021) 729-764.
DOI URL |
[38] |
Z. Han, A. Fina, Prog. Polym. Sci. 36 (2011) 914-944.
DOI URL |
[39] |
X.L. Shi, K. Zheng, M. Hong, W.D. Liu, R. Moshwan, Y. Wang, X.-.L. Qu, Z.G. Chen, J. Zou, Chem. Sci. 9 (2018) 7376-7389.
DOI URL |
[40] | X. Shi, A. Wu, T. Feng, K. Zheng, W. Liu, Q. Sun, M. Hong, S.T. Pantelides, Z.G. Chen, J. Zou, Adv. Energy Mater. 9 (2019) 1803242. |
[1] | Changshu He, Ying Li, Jingxun Wei, Zhiqiang Zhang, Ni Tian, Gaowu Qin, Xiang Zhao. Enhancing the mechanical performance of Al-Zn-Mg alloy builds fabricated via underwater friction stir additive manufacturing and post-processing aging [J]. J. Mater. Sci. Technol., 2022, 108(0): 26-36. |
[2] | T. Fang X., K. Li Z., F. Wang Y., M. Ruiz, L. Ma X., Y. Wang H., Y. Zhu, R. Schoell, C. Zheng, D. Kaoumi, T. Zhu Y.. Achieving high hetero-deformation induced (HDI) strengthening and hardening in brass by dual heterostructures [J]. J. Mater. Sci. Technol., 2022, 98(0): 244-247. |
[3] | Huang Chunping, Liang Renyu, Liu Fenggang, Yang Haiou, Lin Xin. Effect of dimensionless heat input during laser solid forming of high-strength steel [J]. J. Mater. Sci. Technol., 2022, 99(0): 127-137. |
[4] | Dong Wu, Wenya Li, Kun Liu, Yang Yang, Sijie Hao. Optimization of cold spray additive manufactured AA2024/Al2O3 metal matrix composite with heat treatment [J]. J. Mater. Sci. Technol., 2022, 106(0): 211-224. |
[5] | Z.W. Wang, J.F. Zhang, G.M. Xie, L.H. Wu, H. Zhang, P. Xue, D.R. Ni, B.L. Xiao, Z.Y. Ma. Evolution mechanisms of microstructure and mechanical properties in a friction stir welded ultrahigh-strength quenching and partitioning steel [J]. J. Mater. Sci. Technol., 2022, 102(0): 213-223. |
[6] | Yupeng Diao, Luchun Yan, Kewei Gao. A strategy assisted machine learning to process multi-objective optimization for improving mechanical properties of carbon steels [J]. J. Mater. Sci. Technol., 2022, 109(0): 86-93. |
[7] | Sibing Wang, Wenchen Xu, Bin Shao, Guoping Yang, Yingying Zong, Wanting Sun, Zhongze Yang, Debin Shan. Process design and microstructure-property evolution during shear spinning of Ti2AlNb-based alloy [J]. J. Mater. Sci. Technol., 2022, 101(0): 1-17. |
[8] | Wei Wu, Wanjing Zhao, Xianjing Gong, Qijun Sun, Xianwu Cao, Yujun Su, Bin Yu, Robert K.Y. Li, Roy A.L. Vellaisamy. Surface decoration of Halloysite nanotubes with POSS for fire-safe thermoplastic polyurethane nanocomposites [J]. J. Mater. Sci. Technol., 2022, 101(0): 107-117. |
[9] | Libo Fu, Deli Kong, Chengpeng Yang, Jiao Teng, Yan Lu, Yizhong Guo, Guo Yang, Xin Yan, Pan Liu, Mingwei Chen, Ze Zhang, Lihua Wang, Xiaodong Han. Ultra-high strength yet superplasticity in a hetero-grain-sized nanocrystalline Au nanowire [J]. J. Mater. Sci. Technol., 2022, 101(0): 95-106. |
[10] | Yijing Wang, Enkang Hao, Xiaoqin Zhao, Yun Xue, Yulong An, Huidi Zhou. Effect of microstructure evolution of Ti6Al4V alloy on its cavitation erosion and corrosion resistance in artificial seawater [J]. J. Mater. Sci. Technol., 2022, 100(0): 169-181. |
[11] | Zhengyi Mao, Mengke Huo, Fucong Lyu, Yongsen Zhou, Yu Bu, Lei Wan, Lulu Pan, Jie Pan, Hui Liu, Jian Lu. Nacre-liked material with tough and post-tunable mechanical properties [J]. J. Mater. Sci. Technol., 2022, 114(0): 172-179. |
[12] | Guanyu Deng, Xing Zhao, Lihong Su, Peitang Wei, Liang Zhang, Lihua Zhan, Yan Chong, Hongtao Zhu, Nobuhiro Tsuji. Effect of high pressure torsion process on the microhardness, microstructure and tribological property of Ti6Al4V alloy [J]. J. Mater. Sci. Technol., 2021, 94(0): 183-195. |
[13] | Jiang Yang, Honggang Dong, Yueqing Xia, Peng Li, Xiaohu Hao, Yaqiang Wang, Wei Wu, Baosen Wang. Carbide precipitates and mechanical properties of medium Mn steel joint with metal inert gas welding [J]. J. Mater. Sci. Technol., 2021, 75(0): 48-58. |
[14] | Ming Gao, Ke Yang, Lili Tan, Zheng Ma. Improvement of mechanical property and corrosion resistance of Mg-Zn-Nd alloy by bi-direction drawing [J]. J. Mater. Sci. Technol., 2021, 81(0): 88-96. |
[15] | S. Samat, M.Z. Omar, A.H. Baghdadi, I.F. Mohamed, A. Rajabi, A.M. Aziz. Microstructural evolution, dislocation density and tensile properties of Al-6.5Si-2.1Cu-0.35Mg alloy produced by different casting processes [J]. J. Mater. Sci. Technol., 2021, 95(0): 145-157. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||