J. Mater. Sci. Technol. ›› 2021, Vol. 94: 183-195.DOI: 10.1016/j.jmst.2021.03.044
• Research Article • Previous Articles Next Articles
Guanyu Denga,b, Xing Zhaoc, Lihong Sua,*(
), Peitang Weid, Liang Zhange, Lihua Zhanc,*(
), Yan Chongb,f, Hongtao Zhua,*(
), Nobuhiro Tsujib,g
Received:2020-07-31
Revised:2021-03-06
Accepted:2021-03-07
Published:2021-05-09
Online:2021-05-09
Contact:
Lihong Su,Lihua Zhan,Hongtao Zhu
About author:yjs-cast@csu.edu.cn (L. Zhan),Guanyu Deng, Xing Zhao, Lihong Su, Peitang Wei, Liang Zhang, Lihua Zhan, Yan Chong, Hongtao Zhu, Nobuhiro Tsuji. Effect of high pressure torsion process on the microhardness, microstructure and tribological property of Ti6Al4V alloy[J]. J. Mater. Sci. Technol., 2021, 94: 183-195.
Fig. 1. Typical lamellar microstructures of Ti6Al4V alloy before HPT process: (a) SEM-BSE image, (b) EBSD inverse pole figure (IPF) map of α phase, and (c) bright field TEM image.
Fig. 2. Distributions of Vickers microhardness of HPT processed Ti6Al4V alloys against (a) the radial distance from disc centre and (b) the calculated shear strain; (c) plot of the natural logarithm of microhardness of the HPT processed Ti6Al4V alloys against the natural logarithm of shear strain.
Fig. 4. Bright field TEM microstructures at r = 3.5 mm from the disc centre of HPT processed Ti6Al4V alloys: (a) 0.5R-Ti6Al4V, (b) magnified region A as marked in (a), (c) 1R-Ti6Al4V, (d) magnified region B as marked in (c), (e) 2R-Ti6Al4V, (f) 5R-Ti6Al4V, and (g) 10R-Ti6Al4V; (h) dark field TEM image corresponding to (g); and (i) detailed grain size distribution of 10R-Ti6Al4V. (with SAED pattern of 10R-Ti6Al4V inserted in (f)).
Fig. 5. Bright field TEM microstructures at the disc centre of HPT processed Ti6Al4V alloys and their corresponding SAED patterns: (a and a1) 1R-Ti6Al4V, (b and b1) 5R-Ti6Al4V, and (c and c1) 10R-Ti6Al4V.
Fig. 6. (a) Friction coefficient evolution histories against the number of sliding cycles for all studied Ti6Al4V alloys and (b) plot of steady-state friction coefficient against the number of HPT revolutions.
Fig. 7. Plot of steady-state friction coefficient against the Vickers microhardness (corresponding to the location of wear position centre) of all studied Ti6Al4V alloys.
Fig. 8. Three-dimensional wear track profiles of (a) 0R-Ti6Al4V alloy and (b) 10R-Ti6Al4V alloy; (c) plots of typical wear track cross-sectional profile for all Ti6Al4V samples after HPT process.
Fig. 10. SEM images showing the worn surfaces of: (a1-a3) 0R-Ti6Al4V alloy with different magnifications, (b1-b3) 1R-Ti6Al4V alloy with different magnifications, (c1-c3) 5R-Ti6Al4V alloy with different magnifications, and (d1-d3) 0R-Ti6Al4V alloy with different magnifications.
| Sample | Position | Ti | Al | V | Fe | O |
|---|---|---|---|---|---|---|
| 0R-Ti6Al4V | P1 | 34.8 | 2.7 | 2.1 | 50.1 | 10.3 |
| P2 | 67.7 | 4.9 | 2.9 | 4.8 | 19.7 | |
| P3 | 88.9 | 4.1 | 3.3 | 0 | 3.7 | |
| 1R-Ti6Al4V | P4 | 74.4 | 5.6 | 3.8 | 5.7 | 10.5 |
| P5 | 73.7 | 5.8 | 3.4 | 1.6 | 15.5 | |
| P6 | 55.2 | 3.8 | 2.9 | 19.7 | 18.4 | |
| 5R-Ti6Al4V | P7 | 71.9 | 5.1 | 3.3 | 6.0 | 13.7 |
| P8 | 70.3 | 4.7 | 3.5 | 3.4 | 18.1 | |
| P9 | 88.1 | 6.2 | 4.7 | 0.4 | 0.6 | |
| 10R-Ti6Al4V | P10 | 76.2 | 5.7 | 3.9 | 1.9 | 12.3 |
| P11 | 89.5 | 6.1 | 4.1 | 0.3 | 0 | |
| P12 | 85.2 | 3.5 | 3.8 | 3.4 | 4.2 |
Table 1 SEM-EDS point chemical composition analysis of the marked positions (P1-P12) on the worn surfaces of HPT processed Ti6Al4V alloys in Fig. 10 (wt.%).
| Sample | Position | Ti | Al | V | Fe | O |
|---|---|---|---|---|---|---|
| 0R-Ti6Al4V | P1 | 34.8 | 2.7 | 2.1 | 50.1 | 10.3 |
| P2 | 67.7 | 4.9 | 2.9 | 4.8 | 19.7 | |
| P3 | 88.9 | 4.1 | 3.3 | 0 | 3.7 | |
| 1R-Ti6Al4V | P4 | 74.4 | 5.6 | 3.8 | 5.7 | 10.5 |
| P5 | 73.7 | 5.8 | 3.4 | 1.6 | 15.5 | |
| P6 | 55.2 | 3.8 | 2.9 | 19.7 | 18.4 | |
| 5R-Ti6Al4V | P7 | 71.9 | 5.1 | 3.3 | 6.0 | 13.7 |
| P8 | 70.3 | 4.7 | 3.5 | 3.4 | 18.1 | |
| P9 | 88.1 | 6.2 | 4.7 | 0.4 | 0.6 | |
| 10R-Ti6Al4V | P10 | 76.2 | 5.7 | 3.9 | 1.9 | 12.3 |
| P11 | 89.5 | 6.1 | 4.1 | 0.3 | 0 | |
| P12 | 85.2 | 3.5 | 3.8 | 3.4 | 4.2 |
| [1] | G. Lutjering, J.C. Williams, Springer, 2007. |
| [2] | D. Banerjee, J.C. Williams, Perspectives on titanium science and technology, Acta Mater 61 (2013) 844-879. |
| [3] | P. Gao, M. Fu, M. Zhan, Z. Lei, Y. Li, Deformation behavior and microstructure evolution of titanium alloys with lamellar microstructure in hot working pro-cess: a review, J. Mater. Sci. Technol. 39 (2020) 56-73. |
| [4] | W. Chen, H. Wang, Y.C. Lin, X. Zhang, C. Chen, Y. Lv, K. Zhou, The dynamic responses of lamellar and equiaxed near β-Ti alloys subjected to multi-pass cross rolling, J. Mater. Sci. Technol. 43 (2020) 220-229. |
| [5] | W. Chen, J. Zhang, C. Shuo, Y. Pan, M. Huang, Q. Hu, Q. Sun, L. Xiao, J. Sun, Strong deformation anisotropies of omega-precipitates and strengthen-ing mechanisms in Ti-10V-2Fe-3Al alloy micropillars: precipitates shearing vs precipitates disordering, Acta Mater 117 (2016) 68-80. |
| [6] | W. Wang, W. Zeng, D. Li, b. Zhu, Y. Zheng, X. Liang, Microstructural evolution and tensile behavior of Ti 2 AlNb alloys based α2 -phase decomposition, Mater. Sci. Eng. A 662 (2016) 120-128. |
| [7] | W. Wang, W. Zeng, C. Xue, X. Liang, J. Zhang, Microstructural evolution, creep, and tensile behavior of a Ti-22Al-25Nb (at%) orthorhombic alloy, Mater. Sci. Eng. A 603 (2014) 176-184. |
| [8] | G. Lutjering, Influence of processing on microstructure and mechanical prop-erties of (a + b) titanium alloys, Mater. Sci. Eng. A 243 (1998) 32-45. |
| [9] | Y. Chong, T. Bhattacharjee, R. Gholizadeh, J. Yi, N. Tsuji, Investigation on the hot deformation behaviors and globularization mechanisms of lamellar Ti-6Al-4V alloy within a wide range of deformation temperatures, Mater 8 (2019) 100480. |
| [10] | Y. Chong, G. Deng, S. Gao, J. Yi, A. Shibata, N. Tsuji, Yielding nature and Hal-l-Petch relationships in Ti-6Al-4V alloy with fully equiaxed and bimodal mi-crostructures, Scr. Mater. 172 (2019) 77-82. |
| [11] | S.L. Semiatin, V. Seetharaman, I. Weiss, The thermomechanical processing of alpha/beta titanium alloys, JOM 49 (1997) 33-39. |
| [12] | Y. Chong, G. Deng, J. Yi, A. Shibata, N. Tsuji, On the strain hardening abilities of α+ βtitanium alloys: the roles of strain partitioning and interface length density, J. Alloys Compd. 811 (2019) 152040. |
| [13] | Y. Chong, T. Bhattacharjee, M. Park, A. Shibata, N. Tsuji, Factors determin-ing room temperature mechanical properties of bimodal microstructures in Ti-6Al-4V alloy, Mater. Sci. Eng. A 730 (2018) 217-222. |
| [14] | G. Faraji, H.S. Kim, H.T. Kashi, Severe Plastic deformation: Methods, Processing and Properties, Elsevier, 2018. |
| [15] | N. Tsuji, S. Ogata, H. Inui, I. Tanaka, K. Kishida, S. Gao, W. Mao, Y. Bai, R. Zheng, J.P. Du, Strategy for managing both high strength and large ductility in struc-tural materials-sequential nucleation of different deformation modes based on a concept of plastron, Scr. Mater. 181 (2020) 35-42. |
| [16] | H. Yu, M. Yan, J. Li, A. Godbole, C. Lu, K. Tieu, H. Li, C. Kong, Mechanical prop-erties and microstructure of a Ti-6Al-4V alloy subjected to cold rolling, asym-metric rolling and asymmetric cryorolling, Mater. Sci. Eng. A 710 (2018) 10-16. |
| [17] | A. Husaain, A. Ahmed, O.M. Irfan, F. Al-Mufadi, Severe plastic deformation and its application on processing titanium: a review, Int. J. Eng. Technol. 9 (2017) 426-431. |
| [18] | Y.G. Ko, W.S. Jung, D.H. Shin, C.S. Lee, Effects of temperature and initial mi-crostructure on the equal channel angular pressing of Ti-6Al-4V alloy, Scr. Mater. 48 (2003) 197-202. |
| [19] | S.M. Kim, J. Kim, D.H. Shin, Y.G. Ko, C.S. Lee, S.L. Semiatin, Microstructure de-velopment and segment formation during ECA pressing of Ti-6Al-4V alloy, Scr. Mater. 50 (2004) 927-930. |
| [20] | G.G. Yapici, I. Karaman, Z.P. Luo, Mechanical twinning and texture evolution in severely deformed Ti-6Al-4V at high temperatures, Acta Mater 54 (2006) 3755-3771. |
| [21] | I.P. Semenova, J.M. Modina, A.V. Polyakov, G.V. Klevtsov, N.A. Klevtsova, I.N. Pi-galeva, R.Z. Valiev, T.G. Langdon, Fracture toughness at cryogenic temperature of ultrafine-grained Ti-6Al-4V alloy processed by ECAP, Mater. Sci. Eng. A 716 (2018) 260-267. |
| [22] | Z. Zhao, G. Wang, Y. Zhang, J. Gao, H. Hou, Microstructure evolution and me-chanical properties of Ti-6Al-4V alloy prepared by multipass equal channel an-gular pressing, J. Mater. Eng. Perform. 29 (2020) 905-913. |
| [23] | A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: fundamentals and applications, Prog. Mater. Sci. 53 (2008) 893-979. |
| [24] | A.V. Sergueeva, V.V. Stolyarov, R.Z. Valiev, A.K. Mukherjee, Enhanced super-plasticity in a Ti-6Al-4V alloy processed by severe plastic deformation, Scr. Mater. 43 (20 0 0) 819-824. |
| [25] | R.S. Mishra, V.V. Stolyarov, C. Echer, R.Z. Valiev, A.K. Mukherjee, Mechani-cal behavior and superplasticity of a severe plastic deformation processed nanocrystalline Ti-6Al-4V alloy, Mater. Sci. Eng. A 298 (2001) 44-50. |
| [26] | A.V. Sergueeva, V.V. Stolyarov, R.Z. Valiev, A.K. Mukherjee, Superplastic behav-ior of ultrafine-grained Ti-6Al-4V alloys, Mater. Sci. Eng. A 323 (2002) 318-325. |
| [27] | Y.C. Wang, T.G. Langdon, Effect of heat treatment on microstructure and mi-crohardness evolution in a Ti-6Al-4V alloy processed by high-pressure torsion, J. Mater. Sci. 48 (2013) 4646-4652. |
| [28] | Y.C. Wang, T.G. Langdon, Influence of phase volume fractions on the processing of a Ti-6Al-4V alloy by high-pressure torsion, Mater. Sci. Eng. A 559 (2013) 861-867. |
| [29] | R.R. Valiev, I.V. Smirnov, Effect of high pressure torsion technical parameters on grain refinement in Ti-6Al-4V alloy, IOP Conf.Ser. Mater. Sci. Eng. 63 (2014) 012073. |
| [30] | Z.Y. Hu, X.W. Cheng, Z.H. Zhang, H. Wang, S.L. Li, G.F. Korznikova, D.V. Gun-derov, F.C. Wang, The influence of defect structures on the mechanical proper-ties of Ti-6Al-4V alloys deformed by high-pressure torsion at ambient temper-ature, Mater. Sci. Eng. A 684 (2017) 1-13. |
| [31] | H. Shahmir, T.G. Langdon, An evaluation of the hexagonal close-packed to face-centered cubic phase transformation in a Ti-6Al-4V alloy during high-pressure torsion, Mater. Sci. Eng. A 704 (2017) 212-217. |
| [32] | H. Shahmir, T.G. Langdon, Using heat treatments, high-pressure torsion and post-deformation annealing to optimize the properties of Ti-6Al-4V alloys, Acta Mater 141 (2017) 419-426. |
| [33] | J. Fu, H. Ding, Y. Huang, P.H.R. Pereira, W. Zhang, T.G. Langdon, Grain refining of a Ti-6Al-4V alloy by high-pressure torsion and low temperature superplas-ticity Lett. Mater. 5 (2015) 281-286. |
| [34] | J. Fu, Y. Huang, W. Zhang, T.G. Langdon, Influence of phase volume fraction on the grain refining of a Ti-6Al-4V alloy by high-pressure torsion, J. Mater. Res. Technol. 4 (2015) 2-7. |
| [35] | W. Zhang, H. Ding, P.H.R. Pereira, Y. Huang, T.G. Langdon, Grain refinement and superplastic flow in a fully lamellar Ti-6Al-4V alloy processed by high-pressure torsion, Mater. Sci. Eng. A 732 (2018) 398-405. |
| [36] | A. Molinari, G. Straffelini, B. Tesi, T. Bacci, Dry sliding wear mechanisms of the Ti6Al4V alloy, Wear 208 (1997) 105-112. |
| [37] | G. Straffelini, A. Molinari, Dry sliding wear of Ti-6Al-4V alloy as influenced by the counterface and sliding conditions, Wear 236 (1999) 328-338. |
| [38] | W. Wang, H. Zhou, Q. Wang, J. Jin, Y. Sun, K. Wang, High-temperature tribo-logical behavior of the Ti-22Al-25Nb (at.%) Orthorhombic alloy with lamellar O microstructures, Metals (Basel) 9 (2019) 5. |
| [39] | K. Farokhzadeh, A. Edrisy, Transition between mild and severe wear in tita-nium alloys, Tribol.Int. 94 (2016) 98-111. |
| [40] | N. Chelliah, S.V. Kailas, Synergy between tribo-oxidation and strain rate re-sponse on governing the dry sliding wear behavior of titanium, Wear 266 (2009) 704-712. |
| [41] | Y.S. Mao, L. Wang, K.M. Chen, S.Q. Wang, X.H. Cui, Tribo-layer and its role in dry sliding wear of Ti-6Al-4V alloy, Wear 297 (2013) 1032-1039. |
| [42] | X.X. Li, Y. Zhou, X.L. Ji, Y.X. Li, S.Q. Wang, Effects of sliding velocity on tribo-ox-ides and wear behavior of Ti-6Al-4V alloy, Tribol.Int. 91 (2015) 228-234. |
| [43] | M. Qiu, Y. Zhang, J. Yang, J. Zhu, Microstructure and tribological characteristics of Ti-6Al-4V alloy against GCr15 under high speed and dry sliding, Mater. Sci. Eng. A 434 (2006) 71-75. |
| [44] | G. Chassaing, L. Faure, S. Philippon, M. Coulibaly, A. Tidu, P. Chevrier, J. Meri-aux, Adhesive wear of a Ti6Al4V tribopair for a fast friction contact, Wear 320 (2014) 25-33. |
| [45] | J. Jozwik, Evaluation of tribological properties and condition of Ti6Al4V tita-nium alloy surface, Technol.Gaz. 25 (2018) 170-175. |
| [46] | A. Raj J, S.V. Kailas, Evolution of wear debris morphology during dry slid-ing of Ti-6Al-4V against SS316L under ambient and vacuum conditions, Wear 456-457 (2020) 203378. |
| [47] | A. Molinari, G. Straffelini, B. Tesi, T. Bacci, G. Pradelli, Effects of load and slid-ing speed on the tribological behavior of Ti-6Al-4V plasma nitride at different temperatures, Wear203-204 (1997) 447-454. |
| [48] | G.D. Revankar, R. Shetty, S.S. Rao, V.N. Gaitonde, Wear resistance enhancement of titanium alloy (Ti-6Al-4V) by ball burnishing process, J. Mater. Res. Technol. 6 (2017) 13-32. |
| [49] | V.K. Balla, J. Soderlind, S. Bose, A. Bandyopadhyay, Microstructure, mechani-cal and wear properties of laser surface melted Ti6Al4V alloy, J. Mech. Behav. Biomed. 32 (2014) 335-344. |
| [50] | F. Bartolomeu, M. Buciumeanu, E. Pinto, N. Alves, F.S. Silva, O. Carvalho, G. Mi-randa, Wear behavior of Ti6Al4V biomedical alloys processed by selective laser melting, hot pressing and conventional casting, Trans. Nonferrous Met. Soc. China 27 (2017) 829-838. |
| [51] | F. Borgioli, E. Galvanetto, F. Iozzelli, G. Pradelli, Improvement of wear resis-tance of Ti-6Al-4V alloy by means of thermal oxidation, Mater. Lett. 59 (2005) 2159-2162. |
| [52] | D.E. Alman, The abrasive wear of sintered titanium matrix-ceramic particle re-inforced composites, Wear225-229 (1999) 629-639. |
| [53] | S. Zhang, W.T. Wu, M.C. Wang, H.C. Man, In-situ synthesis and wear perfor-mance of TiC particle reinforced composite coating on alloy Ti6Al4V, Surf. Coat. Technol. 138 (2001) 95-100. |
| [54] | P. Salehikahrizsangi, F. Karimzadeh, M.H. Enayati, M.H. Abbasi, Investigation of the effects of grain size and nano-sized reinforcements on tribological proper-ties of Ti6Al4V alloy, Wear 305 (2013) 51-57. |
| [55] | V.V. Stolyarov, L.Sh. Shuster, M.Sh. Migranov, R.Z. Valiev, Y.T. Zhu, Reduction of friction coefficient of ultrafine-grained CP titanium, Mater. Sci. Eng. A 371 (2004) 313-317. |
| [56] | P. La, J. Ma, Y.T. Zhu, J. Yang, W. Liu, Q. Xue, R.Z. Valiev, Dry-sliding tribological properties of ultrafine-grained Ti prepared by severe plastic deformation, Acta Mater 53 (2005) 5167-5173. |
| [57] | N. Gao, C.T. Wang, R.J.K. Wood, T.G. Langdon, Tribological properties of ultra-fine-grained materials processed by severe plastic deformation, J. Mater. Sci. 47 (2012) 4779-4797. |
| [58] | C.T. Wang, N. Gao, M.G. Gee, R.J.K. Wood, T.G. Langdon, Effect of grain size on the micro-tribological behavior of pure titanium processed by high-pressure torsion, Wear280-281 (2012) 28-35. |
| [59] | C.T. Wang, N. Gao, M.G. Gee, R.J.K. Wood, T.G. Langdon, Tribology testing of ul-trafine-grained Ti processed by high-pressure torsion with subsequent coating, J. Mater. Sci. 48 (2013) 4742-4748. |
| [60] | J.E. Mogonye, T.W. Scharf, Tribological properties and mechanisms of self-mated ultrafine-grained titanium, Wear376-377 (2017) 931-939. |
| [61] | G. Deng, T. Bhattacharjee, Y. Chong, R. Zheng, Y. Bai, A.K. Shibata, N. Tsuji, Char-acterization of microstructure and mechanical property of pure titanium with different Fe addition processed by severe plastic deformation and subsequent annealing, IOP Conf. Ser. Mater. Sci. Eng. 194 (2017) 012020. |
| [62] | G. Deng, T. Bhattacharjee, Y. Chong, R. Zheng, Y. Bai, A.K. Shibata, N. Tsuji, In-fluence of Fe addition in CP titanium on phase transformation, microstructure and mechanical properties during high pressure torsion, J. Alloys Compd. 822 (2020) 153604. |
| [63] | G. Deng, A.K. Tieu, X. Lan, L. Su, L. Wang, Q. Zhu, Effects of normal load and ve-locity on the dry sliding tribological behavior of CoCrFeNiMo0.2 high entropy alloy, Tribol. Int. 144 (2020) 106116. |
| [64] | Y. Cao, Y.B. Wang, R.B. Figueiredo, L. Chang, X.Z. Liao, M. Kawasaki, W.L. Zheng, S.P. Ringer, T.G. Langdon, Y.T. Zhu, Three-dimensional shear-strain patterns in-duced by high-pressure torsion and their impact on hardness evolution, Acta Mater 59 (2011) 3903-3914. |
| [65] | Y.Z. Tian, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, T.G. Langdon, Microstruc-tural evolution and mechanical properties of a two-phase Cu-Ag alloy pro-cessed by high-pressure torsion to ultrahigh strains, Acta Mater 59 (2011) 2783-2796. |
| [66] | X.H. An, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, T.G. Langdon, Evolution of microstructural homogeneity in copper processed by high-pressure torsion, Scr. Mater. 63 (2010) 560-563. |
| [67] | R.B. Figueiredo, P.R. Cetlin, T.G. Langdon, Using finite element modeling to ex-amine the flow processes in quasi-constrained high-pressure torsion, Mater. Sci. Eng. A 528 (2011) 8198-8204. |
| [68] | P.T. Wei, C. Lu, K. Tieu, G.Y. Deng, A study of plastic deformation behavior dur-ing high pressure torsion process by crystal plasticity finite element simula-tion, IOP Conf. Ser. Mater. Sci. Eng. 63 (2014) 012045. |
| [69] | P.T. Wei, C. Lu, K. Tieu, G. Deng, H. Wang, N. Kong, Finite element analysis of high pressure torsion, Steel Res.Int. 84 (2013) 1246-1251. |
| [70] | P. Wei, C. Lu, K. Tieu, L. Su, G. Deng, W. Huang, A study on the texture evo-lution mechanism of nickel single crystal deformed by high pressure torsion, Mater. Sci. Eng. A 684 (2017) 239-248. |
| [71] | P.H.R. Pereira, R.B. Figueiredo, Finite element modelling of high-pressure tor-sion: an overview, Mater.Trans. 60 (2019) 1139-1150. |
| [72] | H. Shahmir, T.G. Langdon, Characteristics of the allotropic phase transforma-tion in titanium processed by high-pressure torsion using different rotation speeds, Mater. Sci. Eng. A 667 (2016) 293-299. |
| [73] | Y. Todaka, J. Sasaki, T. Moto, M. Umemoto, Bulk submicrocrystalline ω-Ti pro-duced by high-pressure torsion straining, Scr. Mater. 59 (2008) 615-618. |
| [74] | R.G. Hennig, D.R. Trinkle, J. Bouchet, S.G. Srinivasan, R.C. Albers, J.W. Wilkins, Impurities block the αto ω martensitic transformation in titanium, Nat. Mater. 4 (2005) 129-133. |
| [75] | S. Achanta, J.P. Celis, On the scale dependence of coefficient of friction in un-lubricated sliding contacts, Wear 269 (2010) 435-442. |
| [76] | H. Kato, Y. Todaka, M. Umemoto, K. Morisako, M. Hashimoto, M. Haga, Dry slid-ing wear properties of sub-microcrystalline ultra-low carbon steel produced by high-pressure torsion straining, Mater. Trans. 53 (2012) 128-132. |
| [77] | J. Archard, Contact and rubbing of flat surfaces, J. Appl. Phys. 24 (1953) 981-988. |
| [1] | Jiang Yang, Honggang Dong, Yueqing Xia, Peng Li, Xiaohu Hao, Yaqiang Wang, Wei Wu, Baosen Wang. Carbide precipitates and mechanical properties of medium Mn steel joint with metal inert gas welding [J]. J. Mater. Sci. Technol., 2021, 75(0): 48-58. |
| [2] | Ming Gao, Ke Yang, Lili Tan, Zheng Ma. Improvement of mechanical property and corrosion resistance of Mg-Zn-Nd alloy by bi-direction drawing [J]. J. Mater. Sci. Technol., 2021, 81(0): 88-96. |
| [3] | Ruiqing Lu, Shuwei Zheng, Jie Teng, Jiamin Hu, Dingfa Fu, Jianchun Chen, Guodong Zhao, Fulin Jiang, Hui Zhang. Microstructure, mechanical properties and deformation characteristics of Al-Mg-Si alloys processed by a continuous expansion extrusion approach [J]. J. Mater. Sci. Technol., 2021, 80(0): 150-162. |
| [4] | H.T. Jeong, W.J. Kim. Microstructure tailoring of Al0.5CoCrFeMnNi to achieve high strength and high uniform strain using severe plastic deformation and an annealing treatment [J]. J. Mater. Sci. Technol., 2021, 71(0): 228-240. |
| [5] | H. Niu, H.C. Jiang, M.J. Zhao, L.J. Rong. Effect of interlayer addition on microstructure and mechanical properties of NiTi/stainless steel joint by electron beam welding [J]. J. Mater. Sci. Technol., 2021, 61(0): 16-24. |
| [6] | Z. Zhen, H. Wang, C.Y. Teng, C.G. Bai, D.S. Xu, R. Yang. Dislocation self-interaction in TiAl: Evolution of super-dislocation dipoles revealed by atomistic simulations [J]. J. Mater. Sci. Technol., 2021, 69(0): 138-147. |
| [7] | Hongge Li, Yongjiang Huang, Jianfei Sun, Yunzhuo Lu. The relationship between thermo-mechanical history, microstructure and mechanical properties in additively manufactured CoCrFeMnNi high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 77(0): 187-195. |
| [8] | Y. Chew, Z.G. Zhu, F Weng, S.B. Gao, F.L. Ng, B.Y Lee, G.J. Bi. Microstructure and mechanical behavior of laser aided additive manufactured low carbon interstitial Fe49.5Mn30Co10Cr10C0.5 multicomponent alloy [J]. J. Mater. Sci. Technol., 2021, 77(0): 38-46. |
| [9] | SeungHyeok Chung, Bin Lee, Soo Yeol Lee, Changwoo Do, Ho Jin Ryu. The effects of Y pre-alloying on the in-situ dispersoids of ODS CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 85(0): 62-75. |
| [10] | Zibing An, Shengcheng Mao, Yinong Liu, Hao Zhou, Yadi Zhai, Zhiyong Tian, Cuixiu Liu, Ze Zhang, Xiaodong Han. Hierarchical grain size and nanotwin gradient microstructure for improved mechanical properties of a non-equiatomic CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 92(0): 195-207. |
| [11] | Yamamoto K., Takahashi M., Kamikubo Y., Sugiura Y., Iwasawa S., Nakata T., Kamado S.. Optimization of Cu content for the development of high-performance T5-treated thixo-cast Al-7Si-0.5Mg-Cu (wt.%) alloy [J]. J. Mater. Sci. Technol., 2021, 93(0): 178-190. |
| [12] | Dongdong Dong, Cheng Chang, Hao Wang, Xingchen Yan, Wenyou Ma, Min Liu, Sihao Deng, Julien Gardan, Rodolphe Bolot, Hanlin Liao. Selective laser melting (SLM) of CX stainless steel: Theoretical calculation, process optimization and strengthening mechanism [J]. J. Mater. Sci. Technol., 2021, 73(0): 151-164. |
| [13] | Raymond Kwesi Nutor, Q.P. Cao, X.D. Wang, D.X. Zhang, J.Z. Jiang. Tunability of the mechanical properties of (Fe50Mn27Ni10Cr13)100-xMox high-entropy alloys via secondary phase control [J]. J. Mater. Sci. Technol., 2021, 73(0): 210-217. |
| [14] | Chendong Zhao, Jinshan Li, Yudong Liu, William Yi Wang, Hongchao Kou, Eric Beaugnon, Jun Wang. Tailoring mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via phase transformation [J]. J. Mater. Sci. Technol., 2021, 73(0): 83-90. |
| [15] | Kun Wang, Xian Tong, Jixing Lin, Aiping Wei, Yuncang Li, Matthew Dargusch, Cuie Wen. Binary Zn-Ti alloys for orthopedic applications: Corrosion and degradation behaviors, friction and wear performance, and cytotoxicity [J]. J. Mater. Sci. Technol., 2021, 74(0): 216-229. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
