J. Mater. Sci. Technol. ›› 2022, Vol. 103: 15-28.DOI: 10.1016/j.jmst.2021.07.012
• Research Article • Previous Articles Next Articles
Qiyun Zhanga, Renquan Wub, Yunhong Zhoub, Qilang Linb,*(), Changqing Fangc
Received:
2021-02-10
Revised:
2021-06-12
Accepted:
2021-07-05
Published:
2022-03-20
Online:
2021-09-15
Contact:
Qilang Lin
About author:
* College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, China. E-mail address: linqilang@fzu.edu.cn (Q. Lin).Qiyun Zhang, Renquan Wu, Yunhong Zhou, Qilang Lin, Changqing Fang. A novel surface-oxidized rigid carbon foam with hierarchical macro-nanoporous structure for efficient removal of malachite green and lead ion[J]. J. Mater. Sci. Technol., 2022, 103: 15-28.
Samples | Bulk density (g cm-3) | Open cell (%) | Porosity (%) | Compressive strength (MPa) |
---|---|---|---|---|
ORCF | 0.09 | 98.9 | 95.7 | 0.74 |
ARCF | 0.10 | 98.6 | 95.4 | 0.93 |
CF-TLC | 0.11 | 91.8 | 94.2 | 1.72 |
Table 1 Physical characteristics of the ORCF, ARCF and CF-TLC.
Samples | Bulk density (g cm-3) | Open cell (%) | Porosity (%) | Compressive strength (MPa) |
---|---|---|---|---|
ORCF | 0.09 | 98.9 | 95.7 | 0.74 |
ARCF | 0.10 | 98.6 | 95.4 | 0.93 |
CF-TLC | 0.11 | 91.8 | 94.2 | 1.72 |
Fig. 5. (a, b) Nitrogen adsorption-desorption isotherms and pore size distributions of the ARCF and the ORCF; (c) FT-IR spectra of the ARCF and the ORCF.
Sample | SBETa (m2 g-1) | SMicrob (m2 g-1) | SExterc (m2 g-1) | VTotald (cm3 g-1) |
---|---|---|---|---|
ORCF | 66.16 | 41.64 | 24.52 | 0.0899 |
ARCF | 37.43 | 14.72 | 22.71 | 0.0534 |
CF-TLC | 19.60 | 10.76 | 8.84 | 0.0396 |
Table 2. Textural characteristics of the ORCF, ARCF, and CF-TLC.
Sample | SBETa (m2 g-1) | SMicrob (m2 g-1) | SExterc (m2 g-1) | VTotald (cm3 g-1) |
---|---|---|---|---|
ORCF | 66.16 | 41.64 | 24.52 | 0.0899 |
ARCF | 37.43 | 14.72 | 22.71 | 0.0534 |
CF-TLC | 19.60 | 10.76 | 8.84 | 0.0396 |
Sample | C 1s | O 1s | Element | ||||||
---|---|---|---|---|---|---|---|---|---|
%C-C | %C-O | %C=O | %O-H | %C-O (aromatic) | %C-O (aliphatic) | %C=O | %C | %O | |
ARCF | 79.55 | 20.45 | - | 23.63 | 45.17 | 31.2 | - | 93.79 | 6.21 |
ORCF | 64.94 | 32.87 | 2.19 | 14.83 | 25.64 | 50.53 | 9.00 | 82.15 | 17.85 |
Table 3. XPS elemental analysis of the sample obtained.
Sample | C 1s | O 1s | Element | ||||||
---|---|---|---|---|---|---|---|---|---|
%C-C | %C-O | %C=O | %O-H | %C-O (aromatic) | %C-O (aliphatic) | %C=O | %C | %O | |
ARCF | 79.55 | 20.45 | - | 23.63 | 45.17 | 31.2 | - | 93.79 | 6.21 |
ORCF | 64.94 | 32.87 | 2.19 | 14.83 | 25.64 | 50.53 | 9.00 | 82.15 | 17.85 |
Fig. 7. Variations of adsorption capacity (a and e) and removal percentage (b and f) as a function of initial concentration for MG (m = 1 g L-1; t = 4 h) and Pb2+ (m = 1 g L-1; t = 3 h) adsorption at different temperatures; Langmuir (c and g) and Freundlich (d and h) isotherms for MG and Pb2+ adsorption onto the ORCF, respectively.
Adsorbate | T (K) | Langmuir | Freundlich | |||||
---|---|---|---|---|---|---|---|---|
Qm (mg g-1) | KL (L mg-1) | RL | R2 | KF (mg g-1)(L/mg)1/n | n | R2 | ||
MG | 293 | 666.67 | 0.0908 | 0.0136-0.0268 | 0.9997 | 244.73 | 5.2348 | 0.9543 |
303 | 675.68 | 0.1240 | 0.0100-0.0198 | 0.9992 | 277.93 | 5.7362 | 0.9678 | |
313 | 680.27 | 0.1822 | 0.0068-0.0125 | 0.9985 | 325.08 | 6.7426 | 0.9854 | |
323 | 684.93 | 0.2071 | 0.0060-0.0119 | 0.9976 | 348.13 | 7.3513 | 0.9906 | |
Pb2+ | 293 | 202.43 | 0.1494 | 0.0083-0.0165 | 0.9984 | 41.32 | 2.6078 | 0.8096 |
303 | 206.19 | 0.1892 | 0.0066-0.0130 | 0.9989 | 47.67 | 2.7513 | 0.7991 | |
313 | 208.77 | 0.2542 | 0.0049-0.0097 | 0.9991 | 55.95 | 2.9705 | 0.7844 | |
323 | 210.53 | 0.3412 | 0.0036-0.0073 | 0.9990 | 64.58 | 3.2149 | 0.7695 |
Table 4. Adsorption isotherm model parameters for MG and Pb2+ adsorption onto the ORCF.
Adsorbate | T (K) | Langmuir | Freundlich | |||||
---|---|---|---|---|---|---|---|---|
Qm (mg g-1) | KL (L mg-1) | RL | R2 | KF (mg g-1)(L/mg)1/n | n | R2 | ||
MG | 293 | 666.67 | 0.0908 | 0.0136-0.0268 | 0.9997 | 244.73 | 5.2348 | 0.9543 |
303 | 675.68 | 0.1240 | 0.0100-0.0198 | 0.9992 | 277.93 | 5.7362 | 0.9678 | |
313 | 680.27 | 0.1822 | 0.0068-0.0125 | 0.9985 | 325.08 | 6.7426 | 0.9854 | |
323 | 684.93 | 0.2071 | 0.0060-0.0119 | 0.9976 | 348.13 | 7.3513 | 0.9906 | |
Pb2+ | 293 | 202.43 | 0.1494 | 0.0083-0.0165 | 0.9984 | 41.32 | 2.6078 | 0.8096 |
303 | 206.19 | 0.1892 | 0.0066-0.0130 | 0.9989 | 47.67 | 2.7513 | 0.7991 | |
313 | 208.77 | 0.2542 | 0.0049-0.0097 | 0.9991 | 55.95 | 2.9705 | 0.7844 | |
323 | 210.53 | 0.3412 | 0.0036-0.0073 | 0.9990 | 64.58 | 3.2149 | 0.7695 |
Fig. 8. Variations of adsorption capacity (a and d) towards MG and Pb2+ as a function of time (m = 1 g L-1; T = 293 K); Pseudo-first-order kinetic (b and e) and Pseudo-second-order (c and f) kinetic models for MG and Pb2+ adsorption onto the ORCF, respectively.
Absorbate | C0 (mg L-1) | Pseudo-first-order model | Pseudo-second-order model | ||||
---|---|---|---|---|---|---|---|
K1 (min-1) | R2 | Qe (mg g-1) | V0 [mg (g min) -1] | R2 | Qe (mg g-1) | ||
MG | 400 | 0.0191 | 0.9880 | 466.44 | 8.306 | 0.9937 | 467.29 |
600 | 0.0199 | 0.9717 | 814.77 | 10.021 | 0.9922 | 689.66 | |
800 | 0.0212 | 0.9486 | 1095.83 | 10.886 | 0.9919 | 806.45 | |
Pb2+ | 80 | 0.0189 | 0.9431 | 40.43 | 4.088 | 0.9954 | 82.91 |
160 | 0.0207 | 0.9456 | 105.83 | 5.241 | 0.9904 | 166.94 | |
240 | 0.0152 | 0.8542 | 82.86 | 8.051 | 0.9929 | 201.61 |
Table 5. Adsorption kinetic parameters for MG and Pb2+ adsorption onto the ORCF.
Absorbate | C0 (mg L-1) | Pseudo-first-order model | Pseudo-second-order model | ||||
---|---|---|---|---|---|---|---|
K1 (min-1) | R2 | Qe (mg g-1) | V0 [mg (g min) -1] | R2 | Qe (mg g-1) | ||
MG | 400 | 0.0191 | 0.9880 | 466.44 | 8.306 | 0.9937 | 467.29 |
600 | 0.0199 | 0.9717 | 814.77 | 10.021 | 0.9922 | 689.66 | |
800 | 0.0212 | 0.9486 | 1095.83 | 10.886 | 0.9919 | 806.45 | |
Pb2+ | 80 | 0.0189 | 0.9431 | 40.43 | 4.088 | 0.9954 | 82.91 |
160 | 0.0207 | 0.9456 | 105.83 | 5.241 | 0.9904 | 166.94 | |
240 | 0.0152 | 0.8542 | 82.86 | 8.051 | 0.9929 | 201.61 |
Fig. 9. (a, b) Adsorption of MG and Pb2+ as a function of pH, (c, d) the effect of ionic strength on adsorption of MG and Pb2+ (t = 3 h for MG, 1.5 h for Pb2+; C0 = 600 mg L-1 for MG, 160 mg L-1 for Pb2+; T = 293 K); (e, f) Adsorption of MG and Pb2+ as a function of temperature (t = 3 h for MG, 1.5 h for Pb2+; C0 = 600 mg L-1 for MG, 160 mg L-1 for Pb2+; pH = 6 for MG, 5 for Pb2+).
Absorbate | Temperature (K) | K (L mol-1) | ln KC | ΔG° (kJ mol-1) | ΔH° (kJ mol-1) | ΔS° (J mol-1 K-1) |
---|---|---|---|---|---|---|
MG | 293 | 33133.83 | 10.408 | -25.35 | 22.57 | 163.72 |
303 | 45248.84 | 10.720 | -27.01 | |||
313 | 66486.6 | 11.105 | -28.90 | |||
323 | 75572.86 | 11.233 | -30.16 | |||
Pb2+ | 293 | 30955.68 | 10.340 | -25.19 | 21.77 | 160.69 |
303 | 39202.24 | 10.576 | -26.64 | |||
313 | 52670.24 | 10.872 | -28.29 | |||
323 | 70696.64 | 11.166 | -29.99 |
Table 6. Thermodynamic parameters for MG and Pb2+ adsorption onto the ORCF.
Absorbate | Temperature (K) | K (L mol-1) | ln KC | ΔG° (kJ mol-1) | ΔH° (kJ mol-1) | ΔS° (J mol-1 K-1) |
---|---|---|---|---|---|---|
MG | 293 | 33133.83 | 10.408 | -25.35 | 22.57 | 163.72 |
303 | 45248.84 | 10.720 | -27.01 | |||
313 | 66486.6 | 11.105 | -28.90 | |||
323 | 75572.86 | 11.233 | -30.16 | |||
Pb2+ | 293 | 30955.68 | 10.340 | -25.19 | 21.77 | 160.69 |
303 | 39202.24 | 10.576 | -26.64 | |||
313 | 52670.24 | 10.872 | -28.29 | |||
323 | 70696.64 | 11.166 | -29.99 |
Fig. 10. (a) The FTIR spectra of the ORCF before and after adsorption; (b) The zeta potentials of the ARCF and the ORCF at different pH values; (c, d) Intra-particle diffusion models for MG and Pb2+ adsorption onto the ORCF, respectively (m = 1 g L-1; T = 293 K).
Fig. 11. Adsorption-desorption cycles for MG (m = 1 g L-1; C0 = 600 mg L-1; t = 3 h; pH = 6; T = 313 K) and Pb2+ (m = 1 g L-1; C0 = 160 mg L-1; t = 1.5 h; pH = 5; T = 313 K) adsorption by the ORCF.
Adsorbent | Adsorbate | Temperature (°C), pH | Initial concentration (mg L-1) | Equilibrium concentration (mg L-1) | Maximum adsorption capacity (mg g-1) | Partition coefficient (mg g-1 µM-1) | Refs. |
---|---|---|---|---|---|---|---|
ORCF | MG | 40, 6 | 600 | 12.32 | 587.68b | 17.407 | This work |
Pb2+ | 40, 5 | 160 | 2.20 | 157.80b | 14.855 | ||
APDA-EA | MG | 30, 5.5 | 100 | 48.66 | 89.84a | 0.674 | [ |
Pb2+ | 50, 5 | 100 | 38.67 | 69b | 0.370 | ||
Cell-g-HEMA- co-GMA | MG | 25, 7 | 40 | 15.12 | 24.88a | 0.600 | [ |
Pb2+ | 25, 7 | 200 | 107.41 | 92.59a | 0.179 | ||
CuFe2O4/DC | MG | 55, 9.5 | 250 | 154.76 | 952.4a | 2.246 | [ |
Pb2+ | 55, 6.5 | 250 | 157.89 | 921.1a | 1.209 | ||
FSBP | MG | 20, 5 | 500 | 409.1 | 90.9b | 0.081 | [ |
Pb2+ | 20, 5 | 500 | 356.3 | 143.7b | 0.084 | ||
h-GG/SiO2 | MG | 30, 7 | 1000 | 218.75 | 781.25a | 1.303 | [ |
Pb2+ | 30, 7 | 1400 | 754.85 | 645.15a | 0.177 | ||
CuS-NRs-AC | MG | 25, 6 | 30 | 9.56 | 145.98a | 5.570 | [ |
Pb2+ | 25, 6 | 30 | 23.30 | 47.89a | 0.426 | ||
PDA/CS/Fe3O4 | MG | 30, - | 30 | 18.51 | 57.47a | 1.133 | [ |
Pb2+ | 30, - | 30 | 20.52 | 47.39a | 0.478 | ||
Cu-MOFs/Fe3O4 | MG | 45, - | - | - | 113.67b | - | [ |
Pb2+ | 45, - | - | - | 219b | - | ||
Activated carbon pellet | MG | 25, - | - | - | 395b | - | [ |
alginate-acrylamide hydrogel | Pb2+ | 25, 5 | 500 | 60 | 110a | 0.380 | [ |
Table 7. Comparison of different adsorbents for MG and Pb2+ removal.
Adsorbent | Adsorbate | Temperature (°C), pH | Initial concentration (mg L-1) | Equilibrium concentration (mg L-1) | Maximum adsorption capacity (mg g-1) | Partition coefficient (mg g-1 µM-1) | Refs. |
---|---|---|---|---|---|---|---|
ORCF | MG | 40, 6 | 600 | 12.32 | 587.68b | 17.407 | This work |
Pb2+ | 40, 5 | 160 | 2.20 | 157.80b | 14.855 | ||
APDA-EA | MG | 30, 5.5 | 100 | 48.66 | 89.84a | 0.674 | [ |
Pb2+ | 50, 5 | 100 | 38.67 | 69b | 0.370 | ||
Cell-g-HEMA- co-GMA | MG | 25, 7 | 40 | 15.12 | 24.88a | 0.600 | [ |
Pb2+ | 25, 7 | 200 | 107.41 | 92.59a | 0.179 | ||
CuFe2O4/DC | MG | 55, 9.5 | 250 | 154.76 | 952.4a | 2.246 | [ |
Pb2+ | 55, 6.5 | 250 | 157.89 | 921.1a | 1.209 | ||
FSBP | MG | 20, 5 | 500 | 409.1 | 90.9b | 0.081 | [ |
Pb2+ | 20, 5 | 500 | 356.3 | 143.7b | 0.084 | ||
h-GG/SiO2 | MG | 30, 7 | 1000 | 218.75 | 781.25a | 1.303 | [ |
Pb2+ | 30, 7 | 1400 | 754.85 | 645.15a | 0.177 | ||
CuS-NRs-AC | MG | 25, 6 | 30 | 9.56 | 145.98a | 5.570 | [ |
Pb2+ | 25, 6 | 30 | 23.30 | 47.89a | 0.426 | ||
PDA/CS/Fe3O4 | MG | 30, - | 30 | 18.51 | 57.47a | 1.133 | [ |
Pb2+ | 30, - | 30 | 20.52 | 47.39a | 0.478 | ||
Cu-MOFs/Fe3O4 | MG | 45, - | - | - | 113.67b | - | [ |
Pb2+ | 45, - | - | - | 219b | - | ||
Activated carbon pellet | MG | 25, - | - | - | 395b | - | [ |
alginate-acrylamide hydrogel | Pb2+ | 25, 5 | 500 | 60 | 110a | 0.380 | [ |
[1] |
T. Hussain, A. Wahab, J. Clean. Prod. 198 (2018) 806-819.
DOI URL |
[2] |
L. Zeng, L. Xiao, Y. Long, X. Shi, J. Colloid Interface Sci. 516 (2018) 274-283.
DOI URL |
[3] |
P. Arabkhani, A. Asfaram, J. Hazard. Mater. 384 (2020) 121394.
DOI PMID |
[4] |
M. Shen, B. Song, G. Zeng, Y. Zhang, F. Teng, C. Zhou, Chem. Eng. J. 405 (2021) 126989.
DOI URL |
[5] |
Q. Shi, S. Zhang, J. Ge, J. Wei, C. Christodoulatos, G.P. Korfiatis, X. Meng, Water Res. 179 (2020) 115853.
DOI URL |
[6] |
J. Wang, L. Zhang, T. Zhang, T. Du, T. Li, T. Yue, Z. Li, J. Wang, J. Mater. Sci. Technol. 35 (2019) 1809-1816.
DOI |
[7] |
S. Senguttuvan, P. Senthilkumar, V. Janaki, S. Kamala-Kannan, Chemosphere 267 (2020) 129201.
DOI URL |
[8] |
E. Ntagia, E. Fiset, L. Truong Cong Hong, E. Vaiopoulou, K. Rabaey, J. Hazard. Mater. 388 (2020) 121770.
DOI URL |
[9] |
L. Sellaoui, D. Franco, H. Ghalla, J. Georgin, M.S. Netto, G. Luiz Dotto, A. Bonil-la-Petriciolet, H. Belmabrouk, A. Bajahzar, Chem. Eng. J. 394 (2020)125011.
DOI URL |
[10] |
V.T. Sharma, M.M. Halanur, S.V. Kamath, D. Mondal, N. Sanna Kotrappanavar, Chemosphere 259 (2020) 127421.
DOI PMID |
[11] |
M. Mansuer, L. Miao, D. Zhu, H. Duan, Y. Lv, L. Li, M. Liu, L. Gan, Mater. Chem. Front. 5 (2021) 3061.
DOI URL |
[12] |
Y. Gu, L. Miao, Y. Yin, M. Liu, L. Gan, L. Li, Chin. Chem. Lett. 32 (2021) 1491-1496.
DOI URL |
[13] |
J. Du, W.C. Li, Z.X. Ren, L.P. Guo, A.H. Lu, J. Energy Chem. 42 (2020) 56-61.
DOI URL |
[14] |
J. Li, Y. Ding, N. Yu, Q. Gao, X. Fan, X. Wei, G. Zhang, Z. Ma, X. He, Carbon 158 (2020) 45-54.
DOI URL |
[15] |
X. Liu, S. Wang, C. Sun, H. Liu, L. Stevens, P.K. Dwomoh, C. Snape, Chem. Eng. J. 402 (2020) 125459.
DOI URL |
[16] |
M. Cao, Y. Feng, R. Tian, Q. Chen, J. Chen, M. Jia, J. Yao, Carbon 161 (2020) 224-230.
DOI URL |
[17] |
S. Liu, Z. Huang, R. Wang, Mater. Res. Bull. 48 (2013) 2437-2441.
DOI URL |
[18] |
E. Rodríguez, R. García, Fuel Process. Technol. 156 (2017) 235-245.
DOI URL |
[19] |
G. Tondi, A. Pizzi, L. Delmotte, J. Parmentier, R. Gadiou, Ind. Crops Prod. 31 (2010) 327-334.
DOI URL |
[20] |
Y. Li, J.-Q. Wu, N.-B. Long, R.-F. Zhang , Int. J. Biol. Macromol. 141 (2019) 60-67.
DOI URL |
[21] |
Y. Grosu, Y. Zhao, A. Giacomello, S. Meloni, J.L. Dauvergne, A. Nikulin, E. Palomo, Y. Ding, A. Faik, Appl. Energy 269 (2020) 115088.
DOI URL |
[22] |
M. Priyanka, M.P. Saravanakumar, J. Clean. Prod. 197 (2018) 511-524.
DOI URL |
[23] |
Q. Zhang, Y. Mu, Q. Lin, Y. Chen, C. Fang, L. Xiong, J. Anal. Appl. Pyrolysis 129 (2018) 150-153.
DOI URL |
[24] |
Z. Dong, Z. Zhang, R. Zhou, Y. Dong, Y. Dai, X. Cao, Y. Wang, Y. Liu, Chem. Eng. J. 386 (2020) 123944.
DOI URL |
[25] |
J. Jin, S. Li, X. Peng, W. Liu, C. Zhang, Y. Yang, L. Han, Z. Du, K. Sun, X. Wang, Bioresour. Technol. 256 (2018) 247-253.
DOI URL |
[26] |
L. Yanyan, T.A. Kurniawan, M. Zhu, T. Ouyang, R. Avtar, M.H. Dzarfan Othman, B.T. Mohammad, A.B. Albadarin, J. Environ. Manag. 226 (2018) 365-376.
DOI URL |
[27] |
A. Chandrasekaran, C. Patra, S. Narayanasamy, S. Subbiah, Environ. Res. 188 (2020) 109825.
DOI URL |
[28] |
X. Zhang, W. Wang, S. Luo, Q. Lin, J. Colloid Interface Sci. 553 (2019) 484-493.
DOI URL |
[29] |
J. Bao, H. Li, Y. Xu, S. Chen, Z. Wang, C. Jiang, H. Li, Z. Wei, S. Sun, W. Zhao, C. Zhao, J. Mater. Sci. Technol. 78 (2021) 131-143.
DOI URL |
[30] |
Y. Liu, Q. Gao, C. Li, S. Liu, K. Xia, B. Han, C. Zhou, Chem. Eng. J. 391 (2020) 123610.
DOI URL |
[31] |
S. Tong, J. Shen, X. Jiang, J. Li, X. Sun, Z. Xu, D. Chen, J. Hazard. Mater. 406 (2021) 124581.
DOI URL |
[32] |
Y. Jiang, Z. Tan, G. Fan, Z. Zhang, D.-B. Xiong, Q. Guo, Z. Li, D. Zhang, Carbon 161 (2020) 17-24.
DOI URL |
[33] |
J. Wang, S. Kaskel, J. Mater. Chem. 22 (2012) 23710.
DOI URL |
[34] |
J. Romanos, M. Beckner, T. Rash, L. Firlej, B. Kuchta, P. Yu, G. Suppes, C. Wexler, P. Pfeifer, Nanotechnology 23 (2012) 015401.
DOI URL |
[35] |
Q. Lin, L. Qu, B. Luo, C. Fang, K. Luo, J. Anal. Appl. Pyrolysis 105 (2014) 177-182.
DOI URL |
[36] |
Q. Lin, S. Dong, L. Qu, C. Fang, K. Luo, J. Anal. Appl. Pyrolysis 106 (2014) 164-170.
DOI URL |
[37] |
M. Zhao, Y. Dai, M. Zhang, C. Feng, B. Qin, W. Zhang, N. Zhao, Y. Li, Z. Ni, Z. Xu, D.C.W. Tsang, R. Qiu, Sci. Total Environ. 717 (2020) 136894.
DOI URL |
[38] |
P. Hou, G. Xing, L. Tian, G. Zhang, H. Wang, C. Yu, Y. Li, Z. Wu, Sep. Purif. Technol. 213 (2019) 524-532.
DOI URL |
[39] |
Q. Huang, K. Chai, L. Zhou, H. Ji, Chem. Eng. J. 387 (2020) 124020.
DOI URL |
[40] |
Z.J. Shao, X.L. Huang, F. Yang, W.F. Zhao, X.Z. Zhou, C.S. Zhao, Carbohydr. Polym. 187 (2018) 85-93.
DOI URL |
[41] |
H. Wu, Y. Huang, S. Xu, W. Zhang, K. Wang, M. Zong, Chem. Eng. J. 327 (2017) 855-867.
DOI URL |
[42] |
M. Choudhary, R. Kumar, S. Neogi, J. Hazard. Mater. 392 (2020) 122441.
DOI PMID |
[43] |
Y. Xing, J. Cheng, J. Wu, M. Zhang, X.-a. Li, W. Pan, J. Mater. Sci. Technol. 45 (2020) 84-91.
DOI |
[44] |
H.A. Chanzu, J.M. Onyari, P.M. Shiundu, J. Hazard. Mater. 380 (2019) 120897.
DOI URL |
[45] |
Q.U. Ain, H. Zhang, M. Yaseen, U. Rasheed, K. Liu, S. Subhan, Z. Tong, J. Clean. Prod. 247 (2020) 119088.
DOI URL |
[46] |
E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraján, I. Anastopoulos, J. Mol. Liq. 273 (2019) 425-434.
DOI URL |
[47] |
Q.U. Ain, U. Rasheed, M. Yaseen, H. Zhang, R. He, Z. Tong, Appl. Surf. Sci. 514 (2020) 145929.
DOI URL |
[48] |
H. Molavi, M. Neshastehgar, A. Shojaei, H. Ghashghaeinejad, Chemosphere 247 (2020) 125882.
DOI URL |
[49] |
S. Bao, W. Yang, Y. Wang, Y. Yu, Y. Sun, K. Li, Chem. Eng. J. 399 (2020) 125762.
DOI URL |
[50] |
S. Banerjee, G.C. Sharma, R.K. Gautam, M.C. Chattopadhyaya, S.N. Upadhyay, Y.C. Sharma, J. Mol. Liq. 213 (2016) 162-172.
DOI URL |
[51] |
Y. Huang, X. Lee, M. Grattieri, M. Yuan, R. Cai, F.C. Macazo, S.D. Minteer, Chem. Eng. J. 380 (2020) 122375.
DOI URL |
[52] |
B. Li, Y. Zhang, D. Ma, Z. Shi, S. Ma, Nat. Commun. 5 (2014) 5537.
DOI URL |
[53] |
Z. Yang, Y. Gu, B. Yuan, Y. Tian, J. Shang, D.C.W. Tsang, M. Liu, L. Gan, S. Miao, L. Li, J. Hazard. Mater. 403 (2021) 123702.
DOI URL |
[54] |
D. Sasmal, S. Banerjee, S. Senapati, T. Tripathy, J. Environ. Chem. Eng. 8 (2020) 103741.
DOI URL |
[55] |
R.K. Sharma, R. Kumar, Int. J. Biol. Macromol. 134 (2019) 704-721.
DOI URL |
[56] |
M.A. Khan, M. Otero, M. Kazi, A.A. Alqadami, S.M. Wabaidur, M.R. Siddiqui, Z.A. Alothman, S. Sumbul , J. Hazard. Mater. 365 (2019) 759-770.
DOI URL |
[57] |
F. Zhang, X. Tang, Y. Huang, A.A. Keller, J. Lan, Water Res. 150 (2019) 442-451.
DOI PMID |
[58] |
A.S. Patra, S. Ghorai, D. Sarkar, R. Das, S. Sarkar, S. Pal, Bioresour. Technol. 225 (2017) 367-376.
DOI URL |
[59] |
E. Sharifpour, H.Z. Khafri, M. Ghaedi, A. Asfaram, R. Jannesar, Ultrason. Sonochem. 40 (2018) 373-382.
DOI PMID |
[60] |
Y. Wang, Y. Zhang, C. Hou, M. Liu, J. Taiwan Inst. Chem. Eng. 61 (2016) 292-298.
DOI URL |
[61] |
Z. Shi, C. Xu, H. Guan, L. Li, L. Fan, Y. Wang, L. Liu, Q. Meng, R. Zhang, Colloids Surf. A 539 (2018) 382-390.
DOI URL |
[62] |
S.H. Tang, M.A. Ahmad Zaini, J. Clean. Prod. 253 (2020) 119970.
DOI URL |
[63] |
K. Varaprasad, D. Nùñez, W. Ide, T. Jayaramudu, E.R. Sadiku, J. Mol. Liq. 298 (2020) 112087.
DOI URL |
[1] | Ting He, Jiajia Ru, Yutong Feng, Dapeng Bi, Jiansheng Zhang, Feng Gu, Chi Zhang, Jinhu Yang. Templated spherical coassembly strategy to fabricate MoS2/C hollow spheres with physical/chemical polysulfides trapping for lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2022, 98(0): 136-142. |
[2] | Junmao Hong, Le Kang, Xiaofeng Shi, Renbo Wei, Xianmin Mai, Duo Pan, Nithesh Naik, Zhanhu Guo. Highly efficient removal of trace lead (II) from wastewater by 1,4-dicarboxybenzene modified Fe/Co metal organic nanosheets [J]. J. Mater. Sci. Technol., 2022, 98(0): 212-218. |
[3] | Liuyang Cao, Xue Cheng, Hongjie Xu, Guoqin Cao, Junhua Hu, Guosheng Shao. Planar Li growth on Li21Si5 modified Li metal for the stabilization of anode [J]. J. Mater. Sci. Technol., 2021, 76(0): 156-165. |
[4] | Xin Wang, Jiaqian Zhu, Xiang Yu, Xionghui Fu, Yi Zhu, Yuanming Zhang. Enhanced removal of organic pollutant by separable and recyclable rGH-PANI/BiOI photocatalyst via the synergism of adsorption and photocatalytic degradation under visible light [J]. J. Mater. Sci. Technol., 2021, 77(0): 19-27. |
[5] | Hairui Xing, Ping Hu, Shilei Li, Yegai Zuo, Jiayu Han, Xingjiang Hua, Kuaishe Wang, Fan Yang, Pengfa Feng, Tian Chang. Adsorption and diffusion of oxygen on metal surfaces studied by first-principle study: A review [J]. J. Mater. Sci. Technol., 2021, 62(0): 180-194. |
[6] | Tingting Xu, Ping Niu, Shulan Wang, Li Li. High visible light photocatalytic activities obtained by integrating g-C3N4 with ferroelectric PbTiO3 [J]. J. Mater. Sci. Technol., 2021, 74(0): 128-135. |
[7] | Fei Pan, Chunyi Tong, Zhaoyang Wang, Fenghua Xu d, Xiaofei Wang, Baicheng Weng, Dawei Pan b, Rilong Zhu. Novel sulfhydryl functionalized covalent organic frameworks for ultra-trace Hg2+ removal from aqueous solution [J]. J. Mater. Sci. Technol., 2021, 93(0): 89-95. |
[8] | Nan Sun, Pei-Long Li, Ming Wen, Jiang-Feng Song, Zhi Zhang, Wen-Bin Yang, Yuan-Lin Zhou, De-Li Luo, Quan-Ping Zhang. Insights into heat management of hydrogen adsorption for improved hydrogen isotope separation of porous materials [J]. J. Mater. Sci. Technol., 2021, 76(0): 200-206. |
[9] | Gaoqi Tian, Songrui Wei, Zhangtao Guo, Shiwei Wu, Zhongli Chen, Fuming Xu, Yang Cao, Zheng Liu, Jieqiong Wang, Lei Ding, Jinchun Tu, Hao Zeng. Hierarchical NiMoP2-Ni2P with amorphous interface as superior bifunctional electrocatalysts for overall water splitting [J]. J. Mater. Sci. Technol., 2021, 77(0): 108-116. |
[10] | Muhammad Ali Siddiqui, Ihsan Ullah, Hui Liu, Shuyuan Zhang, Ling Ren, Ke Yang. Preliminary study of adsorption behavior of bovine serum albumin (BSA) protein and its effect on antibacterial and corrosion property of Ti-3Cu alloy [J]. J. Mater. Sci. Technol., 2021, 80(0): 117-127. |
[11] | Yujie Qiang, Hao Li, Xijian Lan. Self-assembling anchored film basing on two tetrazole derivatives for application to protect copper in sulfuric acid environment [J]. J. Mater. Sci. Technol., 2020, 52(0): 63-71. |
[12] | Xing Zhou, Jian Su, Chenxi Wang, Changqing Fang, Xinyu He, Wanqing Lei, Chaoqun Zhang, Zhigang Huang. Design, preparation and measurement of protein/CNTs hybrids: A concise review [J]. J. Mater. Sci. Technol., 2020, 46(0): 74-87. |
[13] | Yan Xing, Jing Cheng, Jian Wu, Mengfei Zhang, Xing-ao Li, Wei Pan. Direct electrospinned La2O3 nanowires decorated with metal particles: Novel 1 D adsorbents for rapid removal of dyes in wastewater [J]. J. Mater. Sci. Technol., 2020, 45(0): 84-91. |
[14] | Yuwei Ye, Zilong Jiang, Yangjun Zou, Hao Chen, Shengda Guo, Qiumin Yang, Liyong Chen. Evaluation of the inhibition behavior of carbon dots on carbon steel in HCl and NaCl solutions [J]. J. Mater. Sci. Technol., 2020, 43(0): 144-153. |
[15] | Anil Kunwar, Lili An, Jiahui Liu, Shengyan Shang, Peter Råback, Haitao Ma, Xueguan Song. A data-driven framework to predict the morphology of interfacial Cu6Sn5 IMC in SAC/Cu system during laser soldering [J]. J. Mater. Sci. Technol., 2020, 50(0): 115-127. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||