J. Mater. Sci. Technol. ›› 2022, Vol. 98: 212-218.DOI: 10.1016/j.jmst.2021.05.021
• Research Article • Previous Articles Next Articles
Junmao Honga, Le Kanga, Xiaofeng Shia,*(), Renbo Weib,*(
), Xianmin Maic,*(
), Duo Pand,f, Nithesh Naike, Zhanhu Guof,*(
)
Received:
2021-04-14
Revised:
2021-05-08
Accepted:
2021-05-09
Published:
2022-01-30
Online:
2022-01-25
Contact:
Xiaofeng Shi,Renbo Wei,Xianmin Mai,Zhanhu Guo
About author:
zguo10@utk.edu (Z. Guo).Junmao Hong, Le Kang, Xiaofeng Shi, Renbo Wei, Xianmin Mai, Duo Pan, Nithesh Naik, Zhanhu Guo. Highly efficient removal of trace lead (II) from wastewater by 1,4-dicarboxybenzene modified Fe/Co metal organic nanosheets[J]. J. Mater. Sci. Technol., 2022, 98: 212-218.
Fig. 1. The adsorption performances of FeCo@BDC for 1.0-500 mg•L-1 Pb2+ ((a) removal rates and equilibrium concentrations of Pb2+; (b) adsorption capacities).
(mg•L-1) | Ce (mg•L-1) | Removal rate (%) | qe (mg•g-1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pb2+ | Cd2+ | Hg2+ | Pb2+ | Cd2+ | Hg2+ | Pb2+ | Cd2+ | Hg2+ | Pb2+ | Cd2+ | Hg2+ |
20 | 20 | 20 | 4.9 ± 0.1 | 5.3 ± 0.1 | 5.1 ± 0.1 | 75.5 | 73.5 | 74.5 | 37.75 ± 0.76 | 36.75 ± 0.74 | 37.25 ± 0.74 |
50 | 20 | 20 | 16.3 ± 0.3 | 6.1 ± 0.1 | 5.9 ± 0.1 | 67.4 | 69.5 | 70.5 | 84.25 ± 1.68 | 34.75 ± 0.70 | 35.25 ± 0.70 |
20 | 50 | 20 | 6.3 ± 0.1 | 16.0 ± 0.3 | 6.0 ± 0.1 | 68.5 | 68.0 | 70.0 | 34.25 ± 0.68 | 85.00 ± 1.70 | 35.00 ± 0.70 |
20 | 20 | 50 | 6.8 ± 0.1 | 6.7 ± 0.1 | 16.4 ± 0.3 | 66.0 | 66.5 | 67.2 | 33.00 ± 0.66 | 33.25 ± 0.66 | 84.00 ± 1.68 |
20 | 0 | 0 | 2.0 ± 0.1 | 0 | 0 | 90.0 | - | - | 45.00±0.90 | - | - |
50 | 0 | 0 | 10.3 ± 0.2 | 0 | 0 | 79.4 | - | - | 99.25±1.98 | - | - |
Table 1 The result of competitive adsorption experiment in mixed solutions.
(mg•L-1) | Ce (mg•L-1) | Removal rate (%) | qe (mg•g-1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pb2+ | Cd2+ | Hg2+ | Pb2+ | Cd2+ | Hg2+ | Pb2+ | Cd2+ | Hg2+ | Pb2+ | Cd2+ | Hg2+ |
20 | 20 | 20 | 4.9 ± 0.1 | 5.3 ± 0.1 | 5.1 ± 0.1 | 75.5 | 73.5 | 74.5 | 37.75 ± 0.76 | 36.75 ± 0.74 | 37.25 ± 0.74 |
50 | 20 | 20 | 16.3 ± 0.3 | 6.1 ± 0.1 | 5.9 ± 0.1 | 67.4 | 69.5 | 70.5 | 84.25 ± 1.68 | 34.75 ± 0.70 | 35.25 ± 0.70 |
20 | 50 | 20 | 6.3 ± 0.1 | 16.0 ± 0.3 | 6.0 ± 0.1 | 68.5 | 68.0 | 70.0 | 34.25 ± 0.68 | 85.00 ± 1.70 | 35.00 ± 0.70 |
20 | 20 | 50 | 6.8 ± 0.1 | 6.7 ± 0.1 | 16.4 ± 0.3 | 66.0 | 66.5 | 67.2 | 33.00 ± 0.66 | 33.25 ± 0.66 | 84.00 ± 1.68 |
20 | 0 | 0 | 2.0 ± 0.1 | 0 | 0 | 90.0 | - | - | 45.00±0.90 | - | - |
50 | 0 | 0 | 10.3 ± 0.2 | 0 | 0 | 79.4 | - | - | 99.25±1.98 | - | - |
Cation | Ci(mgL-1) | Ce(mgL-1) | Removal rates (%) | qe(mgg-1) |
---|---|---|---|---|
Pb2+ | 4.8 ± 0.2 | 0 | 100 | 12.00 |
Cd2+ | 1.4 ± 0.1 | 0 | 100 | 3.50 |
Hg2+ | 3.1 ± 0.2 | 0 | 100 | 7.75 |
Table 2 The result of competitive adsorption experiment in wastewater sample.
Cation | Ci(mgL-1) | Ce(mgL-1) | Removal rates (%) | qe(mgg-1) |
---|---|---|---|---|
Pb2+ | 4.8 ± 0.2 | 0 | 100 | 12.00 |
Cd2+ | 1.4 ± 0.1 | 0 | 100 | 3.50 |
Hg2+ | 3.1 ± 0.2 | 0 | 100 | 7.75 |
Fig. 3. The graphical fitting results of Langmuir and Freundlich isotherms models for the adsorption by the FeCo@BDC adsorbents for 1.0-500 mg•L-1 Pb2+.
Langmuir isotherms model | Freundlich isotherms model | ||||
---|---|---|---|---|---|
qm/mg•g-1 | b/L•mg-1 | R2 | K | n1 | R2 |
220.48 | 0.08679 | 0.9854 | 52.30 | 3 | 0.9537 |
Table 3 The parametric fitting results of adsorption isotherm of FeCo@BDC for 1.0-500 mg•L-1 Pb2+.
Langmuir isotherms model | Freundlich isotherms model | ||||
---|---|---|---|---|---|
qm/mg•g-1 | b/L•mg-1 | R2 | K | n1 | R2 |
220.48 | 0.08679 | 0.9854 | 52.30 | 3 | 0.9537 |
Time/min | 1 | 3 | 5 | 10 | 15 | 30 | 60 | 90 | 120 | 180 |
---|---|---|---|---|---|---|---|---|---|---|
1.0 mg•L-1 Pb2+ | ||||||||||
Ct/mg•L-1 | 0.3 ± 0.1 | 0 ± 0.1 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
qt/mg•g-1 | 1.75 ± 0.04 | 2.50 ± 0.05 | 2.50 ± 0 | 2.50 ± 0 | 2.50 ± 0 | 2.50 ± 0 | 2.50 ± 0 | 2.50 ± 0 | 2.50 ± 0 | 2.50 ± 0 |
10 mg•L-1 Pb2+ | ||||||||||
Ct/mg•L-1 | 8.4 ± 0.2 | 5.7 ± 0.1 | 3.5 ± 0.1 | 0.6 ± 0.1 | 0.5 ± 0.1 | 0.5 ± 0 | 0.5 ± 0 | 0.5 ± 0 | 0.5 ± 0 | 0.5 ± 0 |
qt/mg•g-1 | 4.00 ± 0.08 | 10.75 ± 0.22 | 16.25 ± 0.32 | 23.50 ± 0.47 | 23.75 ± 0.48 | 23.75 ± 0 | 23.75 ± 0 | 23.75 ± 0 | 23.75 ± 0 | 23.75 ± 0 |
Table 4 The cumulative adsorption capacities of FeCo@BDC for 1.0 and 10 mg•L-1 Pb2+ at different time.
Time/min | 1 | 3 | 5 | 10 | 15 | 30 | 60 | 90 | 120 | 180 |
---|---|---|---|---|---|---|---|---|---|---|
1.0 mg•L-1 Pb2+ | ||||||||||
Ct/mg•L-1 | 0.3 ± 0.1 | 0 ± 0.1 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
qt/mg•g-1 | 1.75 ± 0.04 | 2.50 ± 0.05 | 2.50 ± 0 | 2.50 ± 0 | 2.50 ± 0 | 2.50 ± 0 | 2.50 ± 0 | 2.50 ± 0 | 2.50 ± 0 | 2.50 ± 0 |
10 mg•L-1 Pb2+ | ||||||||||
Ct/mg•L-1 | 8.4 ± 0.2 | 5.7 ± 0.1 | 3.5 ± 0.1 | 0.6 ± 0.1 | 0.5 ± 0.1 | 0.5 ± 0 | 0.5 ± 0 | 0.5 ± 0 | 0.5 ± 0 | 0.5 ± 0 |
qt/mg•g-1 | 4.00 ± 0.08 | 10.75 ± 0.22 | 16.25 ± 0.32 | 23.50 ± 0.47 | 23.75 ± 0.48 | 23.75 ± 0 | 23.75 ± 0 | 23.75 ± 0 | 23.75 ± 0 | 23.75 ± 0 |
Fig. 4. The graphical fitting results of (a) pseudo-first-order and (b) pseudo-second-order kinetics models on the adsorption by the FeCo@BDC adsorbents for 1.0 and 10 mg•L-1 Pb2+.
/mg•L-1 | pseudo-first-order kinetics models | pseudo-second-order kinetics models | ||||
---|---|---|---|---|---|---|
qeq/mg•g-1 | K1/min-1 | R2 | qeq/mg•g-1 | K2/g•mg-1•min-1 | R2 | |
1.0 | 5.68 × 10-9 | 0.03438 | 0.0846 | 2.50 | 5.2528 | 0.99999 |
10 | 2.25 × 10-3 | 0.1382 | 0.4358 | 24.14 | 0.02118 | 0.9993 |
Table 5 The parametric fitting results of adsorption kinetics of FeCo@BDC for Pb2+.
/mg•L-1 | pseudo-first-order kinetics models | pseudo-second-order kinetics models | ||||
---|---|---|---|---|---|---|
qeq/mg•g-1 | K1/min-1 | R2 | qeq/mg•g-1 | K2/g•mg-1•min-1 | R2 | |
1.0 | 5.68 × 10-9 | 0.03438 | 0.0846 | 2.50 | 5.2528 | 0.99999 |
10 | 2.25 × 10-3 | 0.1382 | 0.4358 | 24.14 | 0.02118 | 0.9993 |
Adsorbents | Ci (mg•L-1) | Equilibrium time (min) | Removal rate (%) | qm (mg•g-1) | Reference |
---|---|---|---|---|---|
oxMWCNT3h | 1.0 | 20 | 96.7 | 23.4 | [ |
nanostructured Al(OH)3 | 10 | 30 | 95 | 105 | [ |
IIP-AMPSA | 5.0 | 10 | 98.6 | 51.84 | [ |
{[Cd(ADB)L2]•1.5DMF•2H2O}n | 3.0 | 5 | - | 63.052 | [ |
FeCo@BDC | 1.0 | 3 | 100 | 220.48 | This work |
3.0 | - | 100 | |||
5.0 | - | 100 | |||
10 | 15 | 95 |
Table 6 The adsorption performance of different adsorbents for trace Pb2+.
Adsorbents | Ci (mg•L-1) | Equilibrium time (min) | Removal rate (%) | qm (mg•g-1) | Reference |
---|---|---|---|---|---|
oxMWCNT3h | 1.0 | 20 | 96.7 | 23.4 | [ |
nanostructured Al(OH)3 | 10 | 30 | 95 | 105 | [ |
IIP-AMPSA | 5.0 | 10 | 98.6 | 51.84 | [ |
{[Cd(ADB)L2]•1.5DMF•2H2O}n | 3.0 | 5 | - | 63.052 | [ |
FeCo@BDC | 1.0 | 3 | 100 | 220.48 | This work |
3.0 | - | 100 | |||
5.0 | - | 100 | |||
10 | 15 | 95 |
Fig. 5. (a) FTIR spectra, (b) XPS survey spectra and (c) XRD patterns of FeCo@BDC before and after Pb2+ adsorption and after regeneration and (d) the SEM image of FeCo@BDC.
[1] |
X. Luo, F. Pei, W. Wang, H. Qian, K. Miao, Z. Pan, Y. Chen, G. Feng, Microporous Mesoporous Mater. 262 (2018) 148-153.
DOI URL |
[2] |
M. Danish, M. Qamar, M.H. Suliman, M. Muneer, Adv. Compos. Hybrid Mater. 3 (2020) 570-582.
DOI URL |
[3] | D. Pan, F. Su, H. Liu, C. Liu, A. Umar, L. Castaneda, H. Algadi, C. Wang, Z. Guo, ES Mater. Manuf. 11 (2021) 3-15, doi: 10.30919/esmm5f415. |
[4] | Z. Zheng, X. Lin, M. Yang, Z. He, E. Bao, H. Zhang, Z. Tian, ES Energy Environ. 9 (2020) 1-14, doi: 10.30919/esee8c795. |
[5] |
X. Shi, X. Mai, R. Wei, Y. Ma, N. Naik, Z. He, Y. Chen, C. Wang, B. Dong, Z. Guo, Powder Technol. 383 (2021) 104-114.
DOI URL |
[6] | P. Jadhav, S. Shinde, S.S. Suryawanshi, S.B. Teli, P.S. Patil, A.A. Ramteke, N.G. Hiremath, N.R. Prasad, Eng. Sci. 12 (2020) 79-94, doi: 10.30919/es8d1138. |
[7] | B. Yuan, L. Li, V. Murugadoss, S. Vupputuri, J. Wang, N. Alikhani, Z. Guo, ES Food Agrofor. 1 (2020) 41-52, doi: 10.30919/esfaf0004. |
[8] |
Y. Ibrahim, V. Naddeo, F. Banat, S.W. Hasan, Sep. Purif. Technol. 250 (2020) 117250.
DOI URL |
[9] | T. Fan, W. Deng, Y. Gang, Z. Du, Y. Li, E.S. Mater, Manufacturing 12 (2021) 53-62, doi: 10.30919/esmm5f417. |
[10] |
S. Bandehali, A. Moghadassi, F. Parvizian, Y. Zhang, S.M. Hosseini, J. Shen, Sep. Purif. Technol. 242 (2020) 116745.
DOI URL |
[11] |
C. Shang, Y. Zhang, H. Qin, B. He, C. Zhang, J. Sun, J. Li, J. Ma, X. Ji, L. Xu, B. Fu, Opt. Laser Technol. 131 (2020) 106375.
DOI URL |
[12] |
X. Shi, L. Kang, J. Hong, C. Wang, R. Wei, N. Naik, Z. Guo. J. Alloy. Compd. 865 (2021) 158956.
DOI URL |
[13] |
X. Shi, C. Wang, J. Zhang, L. Guo, J. Lin, D. Pan, J. Zhou, J. Fan, T. Ding, Z. Guo. J. Mater. Sci. Technol. 51 (2020) 8-15.
DOI URL |
[14] | M. Naushad, T. Ahamad, K.M. Al-Sheetan, J.Hazard. Mater. 407 (2021) 124816. |
[15] |
Q. Kong, X. Shi, W. Ma, F. Zhang, T. Yu, F. Zhao, D. Zhao, C. Wei. J. Hazard. Mater. 415 (2021) 125690.
DOI URL |
[16] |
J. Cai, W. Wang, W. Xie, X. Wei, H. Liu, S. Wei, H. Gu, Z. Guo, Carbon N. Y. 168 (2020) 640-649.
DOI URL |
[17] |
X. Zhao, X. Yu, X. Wang, S. Lai, Y. Sun, D. Yang, Chem. Eng. J. 407 (2021) 127221.
DOI URL |
[18] |
S. Gao, H. Zhao, J. Feng, Y. Chen, X. Yang, R. Cao, Ind. Eng. Chem. Res. 56 (2017) 10631-10638.
DOI URL |
[19] |
P. Zuo, H. Zhang, M. He, Q. Li, Y. Ma, C. Du, X. Cheng, H. Huo, Y. Gao, G. Yin, Carbon N. Y. 122 (2017) 635-642.
DOI URL |
[20] |
N. Ahmad, P.N. Kotru. J. Electron. Mater. 46 (2017) 6131-6141.
DOI URL |
[21] |
J. Zhang, X. Ye, C. Gu, C. Han, S. Sun, L. Wang, W. Chen, Surf. Sci. Rep. 75 (2020) 100481.
DOI URL |
[22] |
M. Chen, D. Liu, X.i. Du, K.H. Lo, S. Wang, B. Zhou, H. Pan, TrAC Trends Anal. Chem. 130 (2020) 115983.
DOI URL |
[23] | Y. An, Y. Tian, C. Wei, Y. Zhang, S. Xiong, J. Feng, Y. Qian, Energy Storage Mater. 32 (2020) 115-150. |
[24] |
L. Wang, X. Shi, J. Zhang, Y. Zhang, J. Gu. J. Mater. Sci. Technol. 52 (2020) 119-126.
DOI |
[25] |
P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu, Z. Ma, Y. Guo, J. Gu, Nano Micro Lett. 13 (2021) 91.
DOI URL |
[26] | X. Yang, F. You, Y. Zhao, Y. Bai, L. Shao, ES Energy Environ. 1 (2018) 106-113, doi: 10.30919/esee8c142. |
[27] |
X. Shi, R. Zhang, K. Ruan, T. Ma, Y. Guo, J. Gu. J. Mater. Sci. Technol. 82 (2021) 239-249.
DOI URL |
[28] |
T. Kegl, A. Kosak, A. Lobnik, Z. Novak, A.K. Kralj, I. Ban. J. Hazard. Mater. 386 (2020) 121632.
DOI URL |
[29] | T. Zhang, W. Wang, Y. Zhao, H. Bai, T. Wen, S. Kang, G. Song, S. Song, S. Komar- neni, Chem. Eng. J. (2020) 127574. |
[30] |
X. Kong, J. Chen, Y. Tang, Y. Lv, T. Chen, H. Wang. J. Hazard. Mater. 392 (2020) 122392.
DOI URL |
[31] |
Y. Yuan, Z. An, R. Zhang, X. Wei, B. Lai. J. Clean. Prod. 293 (2021) 126215.
DOI URL |
[32] |
M. Šolić, S. Maleti ′c, M.K. Isakovski, J. Nikić, M. Watson, Z. Kónya, S. Rončević. J. Environ. Chem. Eng. 9 (2021) 105402.
DOI URL |
[33] | R. Zaidi, S. Ullah Khan, I.H. Farooqi, A. Azam, Mater. Today Proc. (2021), doi: 10. 1016/j.matpr.2021.03.224. |
[34] |
F. deLiss Meza López, S. Khan, M.A. daSilva, J. AnchietaGomes Neto, G. Pi-casso, M.D.P.T. Sotomayor, React. Funct. Polym. 159 (2021) 104805.
DOI URL |
[35] |
C. Yu, X. Han, Z. Shao, L. Liu, H. Hou, Cryst. Growth Des. 18 (2018) 1474-1482.
DOI URL |
[1] | Fengyi He, Cheng Tang, Yadong Liu, Haitao Li, Aijun Du, Haijiao Zhang. Carbon-coated MoS2 nanosheets@CNTs-Ti3C2 MXene quaternary composite with the superior rate performance for sodium-ion batteries [J]. J. Mater. Sci. Technol., 2022, 100(0): 101-109. |
[2] | Ting He, Jiajia Ru, Yutong Feng, Dapeng Bi, Jiansheng Zhang, Feng Gu, Chi Zhang, Jinhu Yang. Templated spherical coassembly strategy to fabricate MoS2/C hollow spheres with physical/chemical polysulfides trapping for lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2022, 98(0): 136-142. |
[3] | Liuyang Cao, Xue Cheng, Hongjie Xu, Guoqin Cao, Junhua Hu, Guosheng Shao. Planar Li growth on Li21Si5 modified Li metal for the stabilization of anode [J]. J. Mater. Sci. Technol., 2021, 76(0): 156-165. |
[4] | Xin Wang, Jiaqian Zhu, Xiang Yu, Xionghui Fu, Yi Zhu, Yuanming Zhang. Enhanced removal of organic pollutant by separable and recyclable rGH-PANI/BiOI photocatalyst via the synergism of adsorption and photocatalytic degradation under visible light [J]. J. Mater. Sci. Technol., 2021, 77(0): 19-27. |
[5] | Can Li, Fan Feng, Jie Jian, Youxun Xu, Fan Li, Hongqiang Wang, Lichao Jia. Boosting carrier dynamics of BiVO4 photoanode via heterostructuring with ultrathin BiOI nanosheets for enhanced solar water splitting [J]. J. Mater. Sci. Technol., 2021, 79(0): 21-28. |
[6] | Nan Sun, Pei-Long Li, Ming Wen, Jiang-Feng Song, Zhi Zhang, Wen-Bin Yang, Yuan-Lin Zhou, De-Li Luo, Quan-Ping Zhang. Insights into heat management of hydrogen adsorption for improved hydrogen isotope separation of porous materials [J]. J. Mater. Sci. Technol., 2021, 76(0): 200-206. |
[7] | Gaoqi Tian, Songrui Wei, Zhangtao Guo, Shiwei Wu, Zhongli Chen, Fuming Xu, Yang Cao, Zheng Liu, Jieqiong Wang, Lei Ding, Jinchun Tu, Hao Zeng. Hierarchical NiMoP2-Ni2P with amorphous interface as superior bifunctional electrocatalysts for overall water splitting [J]. J. Mater. Sci. Technol., 2021, 77(0): 108-116. |
[8] | Muhammad Ali Siddiqui, Ihsan Ullah, Hui Liu, Shuyuan Zhang, Ling Ren, Ke Yang. Preliminary study of adsorption behavior of bovine serum albumin (BSA) protein and its effect on antibacterial and corrosion property of Ti-3Cu alloy [J]. J. Mater. Sci. Technol., 2021, 80(0): 117-127. |
[9] | Xiangchen Kong, Huiming Huang, Zhaoyang Li, Yanqin Liang, Zhenguo Li, Shengli Zhu. Facile synthesis of defected TiO2-x (B) nanosheet/graphene oxide hybrids with high photocatalytic H2 activity [J]. J. Mater. Sci. Technol., 2021, 80(0): 171-178. |
[10] | Ya Zhao, Yonghua Sun, Weiwei Lan, Zhong Wang, Yi Zhang, Di Huang, Xiaohong Yao, Ruiqiang Hang. Self-assembled nanosheets on NiTi alloy facilitate endothelial cell function and manipulate macrophage immune response [J]. J. Mater. Sci. Technol., 2021, 78(0): 110-120. |
[11] | Hairui Xing, Ping Hu, Shilei Li, Yegai Zuo, Jiayu Han, Xingjiang Hua, Kuaishe Wang, Fan Yang, Pengfa Feng, Tian Chang. Adsorption and diffusion of oxygen on metal surfaces studied by first-principle study: A review [J]. J. Mater. Sci. Technol., 2021, 62(0): 180-194. |
[12] | Jin Liu, Sheng Guo, Hongzhang Wu, Xinlei Zhang, Jun Li, Kun Zhou. Synergetic effects of Bi5+ and oxygen vacancies in Bismuth(V)-rich Bi4O7 nanosheets for enhanced near-infrared light driven photocatalysis [J]. J. Mater. Sci. Technol., 2021, 85(0): 1-10. |
[13] | Yang Li, Ziyang Luo, Shunfei Liang, Huizhen Qin, Xun Zhao, Lingyun Chen, Huayu Wang, Shaowei Chen. Two-dimensional porous zinc cobalt sulfide nanosheet arrays with superior electrochemical performance for supercapatteries [J]. J. Mater. Sci. Technol., 2021, 89(0): 199-208. |
[14] | Huipeng Lv, Chen Wu, Faxiang Qin, Huaxin Peng, Mi Yan. Extra-wide bandwidth via complementary exchange resonance and dielectric polarization of sandwiched FeNi@SnO2 nanosheets for electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2021, 90(0): 1-8. |
[15] | Jie Song, Jun Li, Xiangren Bai, Liang Kang, Liying Ma, Naiqin Zhao, Shuilin Wu, Yuan Xue, Jiajun Li, Xiaojian Ji, Junwei Sha. Cu nanoparticle-decorated two-dimensional carbon nanosheets with superior photothermal conversion efficiency of 65 % for highly efficient disinfection under near-infrared light [J]. J. Mater. Sci. Technol., 2021, 87(0): 83-94. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||