J. Mater. Sci. Technol. ›› 2022, Vol. 129: 228-239.DOI: 10.1016/j.jmst.2022.04.020
• Research Article • Previous Articles Next Articles
Liwei Lana,b,c, Wenxian Wanga,b,c,*(), Zeqin Cuia,b,c,*(
), Xiaohu Haoa,b, Dong Qiud
Received:
2022-03-17
Revised:
2022-04-20
Accepted:
2022-04-25
Published:
2022-05-15
Online:
2022-05-15
Contact:
Wenxian Wang,Zeqin Cui
About author:
cuizeqin@tyut.edu.cn (Z. Cui).Liwei Lan, Wenxian Wang, Zeqin Cui, Xiaohu Hao, Dong Qiu. Anisotropy study of the microstructure and properties of AlCoCrFeNi2.1 eutectic high entropy alloy additively manufactured by selective laser melting[J]. J. Mater. Sci. Technol., 2022, 129: 228-239.
Fig. 1. Raw AlCoCrFeNi2.1 alloy powders: (a) and (b) SEM morphology; (c) XRD pattern; (d) distribution of powder size; (e) and (f) macro morphology and microstructure inside the powder.
Element | Al | Co | Cr | Fe | Ni |
---|---|---|---|---|---|
Requested | 8.51 | 18.59 | 16.40 | 17.62 | 38.88 |
Tested | 8.15 | 18.75 | 16.43 | 18.21 | 38.45 |
Table 1. Requested and tested chemical compositions of AlCoCrFeNi2.1 powder (wt.%).
Element | Al | Co | Cr | Fe | Ni |
---|---|---|---|---|---|
Requested | 8.51 | 18.59 | 16.40 | 17.62 | 38.88 |
Tested | 8.15 | 18.75 | 16.43 | 18.21 | 38.45 |
Parameters | Value |
---|---|
Laser power, P (W) | 200-400 |
Scanning speed, v (mm/s) | 600-1000 |
Layer thickness, t (µm) | 50 |
Hatching space, h (mm) | 0.07 |
Table 2. SLM processing parameters for preparing the samples.
Parameters | Value |
---|---|
Laser power, P (W) | 200-400 |
Scanning speed, v (mm/s) | 600-1000 |
Layer thickness, t (µm) | 50 |
Hatching space, h (mm) | 0.07 |
Fig. 6. Phase distribution of different VED in different planes: (a) VED 106, X-Z; (b) VED 142, X-Z; (c) VED 157, X-Z; (d) VED 166, X-Z; (e) phase content of raw powder and different planes as a function of VED; (f) VED 157, X-Y.
Fig. 8. EBSD images pole figure (IPF) of SLM printed samples: (a) VED 157 (X-Y plane), (b) VED 157 (X-Z plane). (c) Average grain size as a function of VED.
Fig. 10. Distribution of grain boundaries for AlCoCrFeNi2.1 HEAs samples with different VED: (a) VED 106, (b) VED 142, (c) and (e) VED 157, (d) VED 166. (f) Variation trend of the distribution content of LAGBs and HAGBs in different VED.
Fig. 11. EBSD-KAM map and bar graphs of the VED157 samples: (a) and (c) Perpendicular to the building direction (X-Y); (b) and (d) parallel to the building direction (X-Z).
Plane | VED | KAM | Recrystallization (%) | ||
---|---|---|---|---|---|
BCC | FCC | BCC | FCC | ||
X-Z | VED 106 | 0.1842 | 0.2047 | 35.5 | 38.5 |
VED 142 | 0.1792 | 0.2046 | 36.8 | 39.5 | |
VED 157 | 0.1629 | 0.1969 | 41.9 | 42.4 | |
VED 166 | 0.1568 | 0.1944 | 41.6 | 42.1 | |
X-Y | VED 157 | 0.2434 | 0.2579 | 28.6 | 32.4 |
Table 3. Summary of KAM values degree of recrystallization of two phases in different samples.
Plane | VED | KAM | Recrystallization (%) | ||
---|---|---|---|---|---|
BCC | FCC | BCC | FCC | ||
X-Z | VED 106 | 0.1842 | 0.2047 | 35.5 | 38.5 |
VED 142 | 0.1792 | 0.2046 | 36.8 | 39.5 | |
VED 157 | 0.1629 | 0.1969 | 41.9 | 42.4 | |
VED 166 | 0.1568 | 0.1944 | 41.6 | 42.1 | |
X-Y | VED 157 | 0.2434 | 0.2579 | 28.6 | 32.4 |
Fig. 13. Compressive stress-strain curves of the SLM printed AlCoCrFeNi2.1 HEAs simples at various VEDs: (a) perpendicular to build direction; (b) parallel to build direction; (c) compression strength and plastic strain of some typical HEAs [45], [46], [47], [48], [49], [50], [51], [52].
σ0.2 (MPa) | σmax (MPa) | εf (%) | ||
---|---|---|---|---|
VED 106 | ⊥BD | 944 | 1802 | 5.66 |
∥BD | 1095 | 1939 | 4.88 | |
VED 133 | ⊥BD | 1567 | 2872 | 6.81 |
∥BD | 1321 | 2889 | 9.70 | |
VED 134 | ⊥BD | 1029 | 1647 | 3.66 |
//BD | 1084 | 1947 | 4.26 | |
VED 142 | ⊥BD | 1204 | 2090 | 5.7 |
//BD | 1145 | 2074 | 4.04 | |
VED 157 | ⊥BD | 1334 | 3276 | 10.53 |
//BD | 1464 | 3175 | 9.51 | |
VED 166 | ⊥BD | 1436 | 2805 | 9.60 |
//BD | 1317 | 2705 | 7.56 |
Table 4. Compressive mechanical properties of the SLM specimens with different VEDs and loading directions.
σ0.2 (MPa) | σmax (MPa) | εf (%) | ||
---|---|---|---|---|
VED 106 | ⊥BD | 944 | 1802 | 5.66 |
∥BD | 1095 | 1939 | 4.88 | |
VED 133 | ⊥BD | 1567 | 2872 | 6.81 |
∥BD | 1321 | 2889 | 9.70 | |
VED 134 | ⊥BD | 1029 | 1647 | 3.66 |
//BD | 1084 | 1947 | 4.26 | |
VED 142 | ⊥BD | 1204 | 2090 | 5.7 |
//BD | 1145 | 2074 | 4.04 | |
VED 157 | ⊥BD | 1334 | 3276 | 10.53 |
//BD | 1464 | 3175 | 9.51 | |
VED 166 | ⊥BD | 1436 | 2805 | 9.60 |
//BD | 1317 | 2705 | 7.56 |
Schmid factor | BCC | FCC | 0.44-0.5 |
---|---|---|---|
X-Y plane (⊥BD) | 0.458 | 0.449 | 74.98% |
X-Z plane (//BD) | 0.428 | 0.458 | 60.72% |
Table 5. Schmid factor on different surfaces of VED 157, and the percentage of crystal grains with Schmid factor values ranging from 0.44 to 0.5.
Schmid factor | BCC | FCC | 0.44-0.5 |
---|---|---|---|
X-Y plane (⊥BD) | 0.458 | 0.449 | 74.98% |
X-Z plane (//BD) | 0.428 | 0.458 | 60.72% |
[1] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
[2] | M.C. Gao, J.W. Yeh, P.K. Liaw, Y. Zhang, High-Entropy Alloys:Fundamentals and Applications, Springer International Publishing, Switzerland, 2016. |
[3] |
J.W. Yeh, S.Y. Chang, Y.D. Hong, S.K. Chen, S.J. Lin, Mater. Chem. Phys. 103 (2007) 41-46.
DOI URL |
[4] | Y.P. Lu, Y. Dong, S. Guo, L. Jiang, H.J. Kang, T.M. Wang, B. Wen, Z.J. Wang, J.C. Jie, Z.Q. Cao, Sci. Rep. 4 (2014) 1-5. |
[5] |
L. Jiang, Y.P. Lu, Y. Dong, T.M. Wang, Z.Q. Cao, T.J. Li, Intermetallics 44 (2014) 37-43.
DOI URL |
[6] |
Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534 (2016) 227-230.
DOI URL |
[7] |
Z.H. Han, S. Liang, J. Yang, R. Wei, C.J. Zhang, Mater. Charact. 145 (2018) 619-626.
DOI URL |
[8] |
Y.C. Xie, H. Cheng, Q.H. Tang, W. Chen, W.K. Chen, P.Q. Dai, Intermetallics 93 (2018) 228-234.
DOI URL |
[9] |
R.D. Li, P.D. Niu, T.C. Yuan, P. Cao, C. Chen, K.C. Zhou, J. Alloy. Compd. 746 (2018) 125-134.
DOI URL |
[10] |
B. Kang, J. Lee, H.J. Ryu, S.H. Hong, Mater. Sci. Eng. A 712 (2018) 616-624.
DOI URL |
[11] | W.M. Steen, J. Mazumder, Laser Material Processing, Springer Science & Busi- ness Media, Berlin, 2010. |
[12] | M. Guo, D.D. Gu, L.X. Xi, L. Du, H.M. Zhang, J.Y. Zhang, Inter. J. Refract. Met. Hard Mat. 79 (2019) 37-46. |
[13] |
Y. Wang, R.D. Li, P.D. Niu, Z.J. Zhang, K. Li, Intermetallics 120 (2020) 106746.
DOI URL |
[14] |
C.C. Tung, J.W. Yeh, T.T. Shun, S.K. Chen, Y.S. Huang, H.C. Chen, Mater. Lett. 61 (2007) 1-5.
DOI URL |
[15] |
P.F. Zhou, D.H. Xiao, Z. Wu, X.Q. Ou, Mater. Sci. Eng. A 739 (2019) 86-89.
DOI URL |
[16] |
J.T. Wang, Z.P. Long, P.F. Jiang, Y. Fautrelle, X. Li, Metall. Mater. Trans. A 51 (2020) 3504-3517.
DOI URL |
[17] |
R.J. Vikram, B.S. Mu Rty, D. Fabijanic, S. Suwas, J. Alloy. Compd. 827 (2020) 154034.
DOI URL |
[18] |
I.S. Wani, T. Bhattacharjee, S. Sheikh, P.P. Bhattacharjee, S. Guo, N. Tsuji, Mater. Sci. Eng. A 675 (2016) 99-109.
DOI URL |
[19] |
B.S. Dong, Z.Y. Wang, Z.X. Pan, O. Muránsky, C. Shen, M. Reid, B.T. Wu, X. Z. Chen, H.J. Li, Mater. Sci. Eng. A 802 (2021) 140639.
DOI URL |
[20] | P.D. Niu, R.D. Li, T.C. Yuan, S.Y. Zhu, C. Chen, M.B. Wang, L. Huang, Inter- metallics 104 (2019) 24-32. |
[21] |
S.Z. Niu, H.C. Kou, T. Guo, Y. Zhang, J. Wang, J.S. Li, Mater. Sci. Eng. A 671 (2016) 82-86.
DOI URL |
[22] | B. Cao, Z.H. Chen, Y.J. Gao, Chin. J. Nonferrous Met. 8 (1998) 15-19. |
[23] | B.D. Sun, D.Q. Li, Y. Xu, Y.H. Zhou, D.L. Lin, J. Shanghai Jiaotong Univ. 31 (1997) 40-43. |
[24] |
A. Piglione, B. Dovgyy, C. Liu, C.M. Gourlay, P.A. Hooper, M.S. Pham, Mater. Lett. 224 (2018) 22-25.
DOI URL |
[25] |
T. Bhardwaj, M. Shukla, Mater. Sci. Eng. A 734 (2018) 102-109.
DOI URL |
[26] |
Z.Y. Yu, Y. Zheng, J.M. Chen, C.F. Wu, J.J. Xu, H. Lu, C. Yu, J. Mater, Process. Technol. 284 (2020) 116738.
DOI URL |
[27] | P. Chen, S. Li, Y.H. Zhou, M. Yan, M.M. Attallah, J. Mater. Sci. Technol. 43 (2020) 42-45. |
[28] |
F. Peyrouzet, D. Hachet, R. Soulas, C. Navone, S. Godet, S. Gorsse, JOM 71 (2019) 3443-3451.
DOI URL |
[29] |
B. Wang, B.B. Lei, J.X. Zhu, Q. Feng, W. Liang, D. Wu, Mater. Des. 87 (2015) 593-599.
DOI URL |
[30] |
S.D. Adb Akhsh, B. Vrancken, J.P. Kruth, J. Luyten, J.V. Humbeeck, Mater. Sci. Eng. A 650 (2016) 225-232.
DOI URL |
[31] |
P. Cizek, Acta Mater. 106 (2016) 129-143.
DOI URL |
[32] |
S.V.C. Lim, K.V. Yang, Y. Yang, Y. Cheng, A. Huang, X. Wu, C.H.J. Davies, Mater. Sci. Eng. A 651 (2016) 524-534.
DOI URL |
[33] |
W. Li, J. Liu, Y. Zhou, S. Li, S.F. Wen, Q.S. Wei, C.Z. Yan, Y.S. Shi, J. Alloy. Compd. 688 (2016) 626-636.
DOI URL |
[34] |
P.F. Jiang, C.H. Zhang, S. Zhang, J.B. Zhang, Y. Liu, J. Mater. Res. Technol. 9 (2020) 11702-11716.
DOI URL |
[35] |
T. Gurova, L.S. Gomes, S.B. Peripolli, G.F.S. Chavez, S.F. Estefen, A. Leontiev, Mater. Res. 22 (2019) e20190360.
DOI URL |
[36] |
R.E. Napolitano, R.J. Schaefer, J. Mater. Sci. 35 (20 0 0) 1641-1659.
DOI URL |
[37] | J.X. Hou, J. Fan, H.J. Yang, Z. Wang, J.W. Qiao, Inter. J. Miner. Metall. Mater. 27 (2020) 1363-1370. |
[38] |
J.W. Miao, H. Liang, A.J. Zhang, J.Y. He, J.H. Meng, Y.P. Lu, Tribol. Int. 153 (2021) 106599.
DOI URL |
[39] | R.M. Yao, L.W. Zheng, Mech. Eng. Mater. 43 (2019) 28-32. |
[40] | L.G. Cao, L. Zhu, L.L. Zhang, H. Wang, Y. Cui, Y. Yang, F.B. Liu, Chin. J. Mater. Res. 33 (2019) 650-658. |
[41] |
J.X. Hou, M. Zhang, H.J. Yang, J.W. Qiao, Y.C. Wu, Mater. Lett. 238 (2019) 258-260.
DOI URL |
[42] |
J.X. Hou, M. Zhang, S.G. Ma, P.K. Liaw, Y. Zhang, J.W. Qiao, Mater. Sci. Eng. A 707 (2017) 593-601.
DOI URL |
[43] |
D. Karlsson, A. Marshal, F. Johansson, M. Schuisky, M. Sahlberg, J.M. Schneider, U. Jansson, J. Alloy. Compd. 784 (2019) 195-203.
DOI |
[44] | L.G. Cao, L. Zhu, L.L. Zhang, H. Wang, Y. Cui, Y. Yang, F.B. Liu, Chin. J. Mater. Res. 33 (2019) 650-658. |
[45] |
H. Jiang, H.Z. Zhang, T.D. Huang, Y.P. Lu, T.M. Wang, T.J. Li, Mater. Des. 109 (2016) 539-546.
DOI URL |
[46] |
L. Jiang, Y.P. Lu, W. Wu, Z.Q. Cao, T.J. Li, J. Mater. Sci. Technol. 32 (2016) 245-250.
DOI |
[47] |
H. Jiang, L. Jiang, D.X. Qiao, Y.P. Lu, T.M. Wang, Z.Q. Cao, T.J. Li, J. Mater. Sci. Technol. 33 (2017) 712-717.
DOI |
[48] |
L. Jiang, Z.Q. Cao, J. Jie, J. Zhang, Y.P. Lu, T.M. Wang, T.J. Li, J. Alloy. Compd. 649 (2015) 585-590.
DOI URL |
[49] |
Y. Yin, D. Kent, Q.Y. Tan, M. Bermingham, M.X. Zhang, J. Mater. Sci. Technol. 51 (2020) 173-179.
DOI |
[50] |
L. Jiang, Y.P. Lu, Y. Dong, T.M. Wang, Z.Q. Cao, T.J. Li, Appl. Phys. A 119 (2015) 291-297.
DOI URL |
[51] |
M.N. Zhang, X.L. Zhou, D.F. Wang, W.Z. Zhu, J.H. Li, Y.F. Zhao, Mater. Sci. Eng. A 743 (2019) 773-784.
DOI URL |
[52] | W.J. Pan, P.X. Fu, Z.J. Li, H.X. Chen, Q.H. Tang, P.Q. Dai, C. Liu, L. Lin,Microstruc- ture and Properties of Powder Metallurgy Alcocrfeni2. 1 Eutectic High-Entropy Alloy with Gas-Atomized Powder by Sps, 10.2139/ssrn.3988173, Feburary 17, 2022. |
[53] | P.D. Nezhadfar, K. Anderson-Wedge, S.R. Daniewicz, N. Phan, S. Shao, N. Sham- saei, Addit. Manuf. 36 (2020) 101604. |
[54] |
T. Guraya, S. Singamneni, Z.W. Chen, J. Alloy. Compd. 792 (2019) 151-160.
DOI |
[55] |
H.Y. Jung, S.J. Choi, K.G. Prashanth, M.H. Stoica, S. Scudino, S. Yi, U. Kühn, D. H. Kim, K.B. Kim, J. Eckert, Mater. Des. 86 (2015) 703-708.
DOI URL |
[56] | J.B. Forien, N.P. Calta, P.J. DePond, G.M. Guss, T.T. Roehling, M.J. Matthews, Ad- dit. Manuf. 35 (2020) 101336. |
[57] | C. Teng, D. Pal, H. Gong, K. Zeng, K. Briggs, N. Patil, B. Stucker, Addit. Manuf. 14 (2017) 137-147. |
[58] | J.H. Cho, D.F. Farson, J.O. Milewski, K.J. Hollis, J. Phys. d- Appl. Phys. 42 (2009) 175502. |
[59] |
H.Y. Zhao, W.C. Niu, B. Zhang, Y.P. Lei, M. Kodama, T. Ishide, J. Phys. D-Appl. Phys. 44 (2011) 485302.
DOI URL |
[60] | Z. Chen, Y. Xiang, Z.Y. Wei, P. Wei, B.H. Lu, L.Y. Zhang, J. Du, Appl. Phys. A 124 (2018) 1-16. |
[61] |
S.J. Wolff, S. Lin, E.J. Faierson, W.K. Liu, G.J. Wagner, J. Cao, Acta Mater. 132 (2017) 106-117.
DOI URL |
[62] |
Y.Y. Chen, H. Yue, X.P. Wang, Mater. Sci. Eng. A 713 (2018) 195-205.
DOI URL |
[63] |
R.D. Li, Y.S. Shi, J.H. Liu, H.S. Yao, W.X. Zhang, Powder Metall. Met. Ceram. 48 (2009) 186-195.
DOI URL |
[64] | D.D. Voelkel, J. Mazumder, Appl. Optics 29 (1990) 1718-1720. |
[65] | Y.H. Liu, J. Li, C. Zhang, Adv. Mater. Res. 97-101 (2010) 3824-3827. |
[1] | Ruijun Li, Fan Zhang, Yong Hu. Performance of switch between exchange bias and coercivity: Influences of antiferromagnetic anisotropy and exchange coupling [J]. J. Mater. Sci. Technol., 2022, 120(0): 186-195. |
[2] | Joseph A. Otte, Jin Zou, Matthew S. Dargusch. High strength and ductility of titanium matrix composites by nanoscale design in selective laser melting [J]. J. Mater. Sci. Technol., 2022, 118(0): 114-127. |
[3] | Jiantao Fan, Liming Fu, Yanle Sun, Feng Xu, Yi Ding, Mao Wen, Aidang Shan. Unveiling the precipitation behavior and mechanical properties of Co-free Ni47-xFe30Cr12Mn8AlxTi3 high-entropy alloys [J]. J. Mater. Sci. Technol., 2022, 118(0): 25-34. |
[4] | W.L. Wang, W.Q. Liu, X. Yang, R.R. Xu, Q.Y. Dai. Multi-scale simulation of columnar-to-equiaxed transition during laser selective melting of rare earth magnesium alloy [J]. J. Mater. Sci. Technol., 2022, 119(0): 11-24. |
[5] | Shengfeng Zhou, Min Xie, Changyi Wu, Yanliang Yi, Dongchu Chen, Lai-Chang Zhang. Selective laser melting of bulk immiscible alloy with enhanced strength: Heterogeneous microstructure and deformation mechanisms [J]. J. Mater. Sci. Technol., 2022, 104(0): 81-87. |
[6] | Wei Zhang, Zhichao Ma, Chaofan Li, Chaowei Guo, Dongni Liu, Hongwei Zhao, Luquan Ren. Micro/nano-mechanical behaviors of individual FCC, BCC and FCC/BCC interphase in a high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 114(0): 102-110. |
[7] | Jinshuo Zhang, Guohua Wu, Liang Zhang, Xiaolong Zhang, Chunchang Shi, Xin Tong. Addressing the strength-ductility trade-off in a cast Al-Li-Cu alloy—Synergistic effect of Sc-alloying and optimized artificial ageing scheme [J]. J. Mater. Sci. Technol., 2022, 96(0): 212-225. |
[8] | Y.K. Xiao, H. Chen, Z.Y. Bian, T.T. Sun, H. Ding, Q. Yang, Y. Wu, Q. Lian, Z. Chen, H.W. Wang. Enhancing strength and ductility of AlSi10Mg fabricated by selective laser melting by TiB2 nanoparticles [J]. J. Mater. Sci. Technol., 2022, 109(0): 254-266. |
[9] | Xinde Huang, Yunchang Xin, Yu Cao, Guangjie Huang, Wei Li. A quantitative study on planar mechanical anisotropy of a Mg-2Zn-1Ca alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 30-48. |
[10] | Xuehui Yan, Peter K. Liaw, Yong Zhang. Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates [J]. J. Mater. Sci. Technol., 2022, 110(0): 109-116. |
[11] | Jianwen Le, Yuanfei Han, Peikun Qiu, Shaopeng Li, Guangfa Huang, Jianwei Mao, Weijie Lu. Insight into the formation mechanism and interaction of matrix/TiB whisker textures and their synergistic effect on property anisotropy in titanium matrix composites [J]. J. Mater. Sci. Technol., 2022, 110(0): 1-13. |
[12] | L. Zhao, L. Jiang, L.X. Yang, H. Wang, W.Y. Zhang, G.Y. Ji, X. Zhou, W.A. Curtin, X.B. Chen, P.K. Liaw, S.Y. Chen, H.Z. Wang. High throughput synthesis enabled exploration of CoCrFeNi-based high entropy alloys [J]. J. Mater. Sci. Technol., 2022, 110(0): 269-282. |
[13] | Yafeng Yang, Kang Geng, Shaofu Li, Michael Bermingham, R.D.K. Misra. Highly ductile hypereutectic Al-Si alloys fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 110(0): 84-95. |
[14] | Heng Duan, Bin Liu, Ao Fu, Junyang He, Tao Yang, C.T. Liu, Yong Liu. Segregation enabled outstanding combination of mechanical and corrosion properties in a FeCrNi medium entropy alloy manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 99(0): 207-214. |
[15] | Hao Guo, Shufeng Yang, Tiantian Wang, Hang Yuan, Yanling Zhang, Jingshe Li. Microstructure evolution and acicular ferrite nucleation in inclusion-engineered steel with modified MgO@C nanoparticle addition [J]. J. Mater. Sci. Technol., 2022, 99(0): 277-287. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||