J. Mater. Sci. Technol. ›› 2022, Vol. 118: 114-127.DOI: 10.1016/j.jmst.2021.12.020
• Research Article • Previous Articles Next Articles
Joseph A. Ottea, Jin Zoua,b, Matthew S. Darguscha,*(
)
Received:2021-10-07
Revised:2021-12-15
Accepted:2021-12-18
Published:2022-08-10
Online:2022-02-24
Contact:
Matthew S. Dargusch
About author:* E-mail address: m.dargusch@uq.edu.au (M.S. Dargusch).Joseph A. Otte, Jin Zou, Matthew S. Dargusch. High strength and ductility of titanium matrix composites by nanoscale design in selective laser melting[J]. J. Mater. Sci. Technol., 2022, 118: 114-127.
Fig. 2. Particle size and distribution. (a) Particle size distribution of CP-Ti as supplied by AP&C. (b) SEM secondary electron image of CP-Ti. (c) TEM image of BN nanoplates as received from Nanografi. (d) SEM secondary electron image of CP-Ti after mixing with 2.5 vol.% BN. (e) SEM back-scattered electron image of CP-Ti mixed with 2.5 vol.% BN.
| Empty Cell | Name | Laser power (W) | Scan speed (mm/s) | Hatch spacing (mm) | Heat treatment | Relative density (%) |
|---|---|---|---|---|---|---|
| CP-Ti | T1 | 70 | 230 | 0.085 | - | 99.4 ± 0.2 |
| T2 | 70 | 195 | 0.1 | - | 97.2 ± 0.4 | |
| T3 | 100 | 325 | 0.085 | - | 96.8 ± 0.6 | |
| T4 | 100 | 280 | 0.1 | - | 96.1 ± 0.3 | |
| T5 | 120 | 445 | 0.075 | - | 99.6 ± 0.1 | |
| T6 | 120 | 335 | 0.1 | - | 98.0 ± 0.2 | |
| T7 | 120 | 255 | 0.13 | - | 97.5 ± 0.4 | |
| T8 | 140 | 520 | 0.075 | - | 99.5 ± 0.1 | |
| T9 | 140 | 390 | 0.1 | - | 97.5 ± 0.5 | |
| CP-Ti + 2.5 vol.% BN | TC1 | 120 | 445 | 0.075 | - | 99.6 ± 0.2 |
| TC1H | 120 | 445 | 0.075 | Yes | 99.7 ± 0.3 | |
| TC2 | 140 | 520 | 0.075 | - | 99.4 ± 0.2 | |
| TC2H | 140 | 520 | 0.075 | Yes | 99.7 ± 0.1 | |
| TC3 | 180 | 665 | 0.075 | - | 99.6 ± 0.2 | |
| TC3H | 180 | 665 | 0.075 | Yes | 99.6 ± 0.1 | |
| TC4 | 180 | 385 | 0.13 | - | 98.8 ± 0.3 | |
| TC5 | 120 | 255 | 0.13 | - | 98.4 ± 0.2 |
Table 1. List of processing parameters for SLM prepared samples with relative density measured by the Archimedes method. The values of density are given as a percentage shown as the mean ± SD.
| Empty Cell | Name | Laser power (W) | Scan speed (mm/s) | Hatch spacing (mm) | Heat treatment | Relative density (%) |
|---|---|---|---|---|---|---|
| CP-Ti | T1 | 70 | 230 | 0.085 | - | 99.4 ± 0.2 |
| T2 | 70 | 195 | 0.1 | - | 97.2 ± 0.4 | |
| T3 | 100 | 325 | 0.085 | - | 96.8 ± 0.6 | |
| T4 | 100 | 280 | 0.1 | - | 96.1 ± 0.3 | |
| T5 | 120 | 445 | 0.075 | - | 99.6 ± 0.1 | |
| T6 | 120 | 335 | 0.1 | - | 98.0 ± 0.2 | |
| T7 | 120 | 255 | 0.13 | - | 97.5 ± 0.4 | |
| T8 | 140 | 520 | 0.075 | - | 99.5 ± 0.1 | |
| T9 | 140 | 390 | 0.1 | - | 97.5 ± 0.5 | |
| CP-Ti + 2.5 vol.% BN | TC1 | 120 | 445 | 0.075 | - | 99.6 ± 0.2 |
| TC1H | 120 | 445 | 0.075 | Yes | 99.7 ± 0.3 | |
| TC2 | 140 | 520 | 0.075 | - | 99.4 ± 0.2 | |
| TC2H | 140 | 520 | 0.075 | Yes | 99.7 ± 0.1 | |
| TC3 | 180 | 665 | 0.075 | - | 99.6 ± 0.2 | |
| TC3H | 180 | 665 | 0.075 | Yes | 99.6 ± 0.1 | |
| TC4 | 180 | 385 | 0.13 | - | 98.8 ± 0.3 | |
| TC5 | 120 | 255 | 0.13 | - | 98.4 ± 0.2 |
Fig. 3. SEM images of SLM produced CP-Ti samples. (a) Sample produced with laser power 70 W, scan speed 195 mm/s and hatch spacing 0.1 mm. (b) Sample produced with laser power 70 W, scan speed 230 mm/s and hatch spacing 0.085 mm.
Fig. 4. SEM images of as printed TMCs (TC3 and TC4) after etching. (a) Secondary electron (SE) image of TC3 sample after light etching for 2 min. (b, c) SE and backscattered electron image of TC4 sample after deep etching for 6 min. (d, e) SE image and associated EDS map of TiB nanowhiskers in TC4 sample.
Fig. 5. Characterization of heat treatment effect on the microstructure of pure Ti and Ti + 2.5 vol.% BN. (A1-A4) SEM images taken of deeply etched samples; TC2, TC2H, TC3, and TC3H samples respectively. (A3) and (A4) inset TEM images of extracted TiB nanowhiskers. (B1-B4) Optical micrographs and SEM images of lightly etched samples; T5, T5H TC3 and TC3H respectively. (C) XRD patterns of Ti + 2.5 vol.% BN powder, TC3 and TC3H samples.
| Samples | Ti | O | B | N | Fe | C | H |
|---|---|---|---|---|---|---|---|
| TC3 | Bal | 0.29 | 0.25 | 0.06 | 0.02 | 0.01 | <0.002 |
| TC3H | Bal | 0.25 | 0.22 | 0.06 | 0.04 | 0.03 | <0.002 |
Table 2. Sample compositions measured by ICP-AES and infrared combustion analysis in wt.%.
| Samples | Ti | O | B | N | Fe | C | H |
|---|---|---|---|---|---|---|---|
| TC3 | Bal | 0.29 | 0.25 | 0.06 | 0.02 | 0.01 | <0.002 |
| TC3H | Bal | 0.25 | 0.22 | 0.06 | 0.04 | 0.03 | <0.002 |
| Sample | Tensile Test | Hardness, H (GPa) | ||||
|---|---|---|---|---|---|---|
| Empty Cell | Empty Cell | Ey (GPa) | σy (MPa) | σUTS (MPa) | εf (%) | Empty Cell |
| T5 | Transverse | 112 ± 2 | 849 ± 23 | 1021 ± 30 | 27 ± 5 | 2.7 ± 0.4 |
| Longitudinal | 113 ± 1 | 799 ± 44 | 861 ± 41 | 28 ± 5 | ||
| T5H | Transverse | 105 ± 1 | 755 ± 6 | 892 ± 10 | 30 ± 3 | 2.5 ± 0.4 |
| Longitudinal | 105 ± 2 | 789 ± 20 | 875 ± 15 | 30 ± 2 | ||
| TC3 | Transverse | 133 ± 2 | 1322 ± 14 | 1384 ± 22 | 6 ± 1 | 5.1 ± 0.2 |
| Longitudinal | 132 ± 3 | 1332 ± 17 | 1386 ± 30 | 8 ± 1 | ||
| TC3H | Transverse | 133 ± 1 | 1353 ± 42 | 1407 ± 29 | 10 ± 1 | 5.5 ± 0.1 |
| Longitudinal | 127 ± 3 | 1392 ± 17 | 1453 ± 16 | 9 ± 1 | ||
| Composition & Method | Ey (GPa) | σy (MPa) | σUTS (MPa) | εf (%) | Hnano (GPa) | |
| Grade 1/2 CP-Ti, SLM[ | - | 555/630 | 757/732 | 19.5/20.3 | 2.39 | |
| CP-Ti + 5 vol.% TiB2, SLM[ | - | - | - | - | 3.33 | |
| Ti6Al4V + 1.5 wt.% B4C, DMD[ | 122 | 1150 | 1190 | 2.9 | - | |
| CP-Ti + 0.5 wt.% TiB2, SLM[ | - | ∼836 | ∼923 | ∼8.3 | - | |
| CP-Ti + 1 wt.% TiB2, SLM[ | - | ∼956 | ∼1021 | ∼1.8 | - | |
| CP-Ti + 5 vol.% TiB, SPS[ | - | 1163 | 1285 | 5.8 | - | |
Table 3. Tensile test and hardness results. Average results for each sample tested are presented as mean with ± SD. Literature results are presented for comparison.
| Sample | Tensile Test | Hardness, H (GPa) | ||||
|---|---|---|---|---|---|---|
| Empty Cell | Empty Cell | Ey (GPa) | σy (MPa) | σUTS (MPa) | εf (%) | Empty Cell |
| T5 | Transverse | 112 ± 2 | 849 ± 23 | 1021 ± 30 | 27 ± 5 | 2.7 ± 0.4 |
| Longitudinal | 113 ± 1 | 799 ± 44 | 861 ± 41 | 28 ± 5 | ||
| T5H | Transverse | 105 ± 1 | 755 ± 6 | 892 ± 10 | 30 ± 3 | 2.5 ± 0.4 |
| Longitudinal | 105 ± 2 | 789 ± 20 | 875 ± 15 | 30 ± 2 | ||
| TC3 | Transverse | 133 ± 2 | 1322 ± 14 | 1384 ± 22 | 6 ± 1 | 5.1 ± 0.2 |
| Longitudinal | 132 ± 3 | 1332 ± 17 | 1386 ± 30 | 8 ± 1 | ||
| TC3H | Transverse | 133 ± 1 | 1353 ± 42 | 1407 ± 29 | 10 ± 1 | 5.5 ± 0.1 |
| Longitudinal | 127 ± 3 | 1392 ± 17 | 1453 ± 16 | 9 ± 1 | ||
| Composition & Method | Ey (GPa) | σy (MPa) | σUTS (MPa) | εf (%) | Hnano (GPa) | |
| Grade 1/2 CP-Ti, SLM[ | - | 555/630 | 757/732 | 19.5/20.3 | 2.39 | |
| CP-Ti + 5 vol.% TiB2, SLM[ | - | - | - | - | 3.33 | |
| Ti6Al4V + 1.5 wt.% B4C, DMD[ | 122 | 1150 | 1190 | 2.9 | - | |
| CP-Ti + 0.5 wt.% TiB2, SLM[ | - | ∼836 | ∼923 | ∼8.3 | - | |
| CP-Ti + 1 wt.% TiB2, SLM[ | - | ∼956 | ∼1021 | ∼1.8 | - | |
| CP-Ti + 5 vol.% TiB, SPS[ | - | 1163 | 1285 | 5.8 | - | |
Fig. 6. Tensile test results. (a) Engineering stress-strain curves for T5, T5H, TC3 and TC3H samples with horizontal bars at the point of failure representing transverse samples and the remainder longitudinal. (b-d) Photographs of tensile samples showing print quality.
Fig. 8. TEM analysis of TiB as printed (A) and after furnace annealing (B). (A1) TEM image showing cluster of TiB with inset high mag image of TiB interface. (A2) High magnification image of TiB showing stacking faults parallel to (100). (A3) Indexed selected area diffraction pattern (SAED) at TiB-Ti interface showing orientation relationship with [010]TiB//[11$\bar{2}$0]α-Ti. (B1) TEM image of isolated TiB with inset high magnification image. (B2) High magnification image of TiB showing atomic planes parallel to (100). (B3) SAED of TiB along [010] direction.
Fig. 9. Schematic showing the microstructural evolution that occurs during post process heat treatment. All residual BN is reacted, TiB grows with clusters and defects removed and on cooling α-Ti growth is restricted by TiB nanowhiskers.
| [1] |
H. Attar, S. Ehtemam-Haghighi, D. Kent, M.S. Dargusch, Int. J. Mach. Tools Manuf. 133 (2018) 85-102.
DOI URL |
| [2] | K. Kondoh, M. Qian, F.H. Froes, in: Titanium Powder Metallurgy, Butter-worth-Heinemann, Boston, 2015, pp. 277-297. |
| [3] |
S.C. Tjong, Z.Y. Ma, Mater. Sci. Eng. R 29 (0) 49-113.
DOI URL |
| [4] |
L.J. Huang, L. Geng, H.X. Peng, Mater. Sci. Eng. A 527 (2010) 6723-6727.
DOI URL |
| [5] |
Z.D. Cui, S.L. Zhu, H.C. Man, X.J. Yang, Surf. Coat. Technol. 190 (2005) 309-313.
DOI URL |
| [6] |
P.B. Joshi, G.R. Marathe, N.S.S. Murti, V.K. Kaushik, P. Ramakrishnan, Mater. Lett. 56 (2002) 322-328.
DOI URL |
| [7] |
M.S. Selamat, L.M. Watson, T.N. Baker, J. Mater. Process. Technol. 142 (2003) 725-737.
DOI URL |
| [8] | T. Saito, JOM 56 (2004) 33-36. |
| [9] |
J. Lapin, L. Ondrúš, O. Bajana, Mater. Sci. Eng. A 360 (2003) 85-95.
DOI URL |
| [10] |
M.Y. Koo, J.S. Park, M.K. Park, K.T. Kim, S.H. Hong, Scr. Mater. 66 (2012) 487-490.
DOI URL |
| [11] |
F. Saba, F. Zhang, S. Liu, T. Liu, Compos. Part B Eng. 167 (2019) 7-19.
DOI URL |
| [12] |
E.O. Ezugwu, Z.M. Wang, J. Mater. Process. Technol. 68 (1997) 262-274.
DOI URL |
| [13] |
Z. Fang, P. Sun, Key Eng. Mater. 520 (2012) 15-23.
DOI URL |
| [14] |
Z.Z. Fang, J.D. Paramore, P. Sun, K.S.R. Chandran, Y. Zhang, Y. Xia, F. Cao, M. Koopman, M. Free, Int. Mater. Rev. 63 (2018) 407-459.
DOI URL |
| [15] |
D. Gu, Y.C. Hagedorn, W. Meiners, G. Meng, R.J.S. Batista, K. Wissenbach, R. Poprawe, Acta Mater. 60 (2012) 3849-3860.
DOI URL |
| [16] |
D. Gu, G. Meng, C. Li, W. Meiners, R. Poprawe, Scr. Mater. 67 (2012) 185-188.
DOI URL |
| [17] |
H. Attar, S. Ehtemam-Haghighi, D. Kent, I.V. Okulov, H. Wendrock, M. B ӧnisch, A.S. Volegov, M. Calin, J. Eckert, M.S. Dargusch, Mater. Sci. Eng. A 688 (2017) 20-26.
DOI URL |
| [18] |
H. Attar, M. Bönisch, M. Calin, L.C. Zhang, S. Scudino, J. Eckert, Acta Mater. 76 (2014) 13-22.
DOI URL |
| [19] |
Y. Dong, Y. Li, T. Ebel, M. Yan, J. Mater. Res. 35 (2020) 1922-1935.
DOI URL |
| [20] | C. Han, R. Babicheva, J.D.Q. Chua, U. Ramamurty, S.B. Tor, C.N. Sun, K. Zhou, Addit. Manuf. 36 (2020) 101466. |
| [21] |
H. Li, D. Jia, Z. Yang, Y. Zhou, J. Alloy. Compd. 836 (2020) 155344.
DOI URL |
| [22] |
H. Li, Z. Yang, D. Cai, D. Jia, Y. Zhou, Mater. Des. 185 (2020) 108245.
DOI URL |
| [23] |
J. Jin, S. Zhou, Y. Zhao, Q. Zhang, X. Wang, W. Li, D. Chen, L.C. Zhang, Opt. Laser Technol. 134 (2021) 106644.
DOI URL |
| [24] | Q. Chao, S. Mateti, M. Annasamy, M. Imran, J. Joseph, Q. Cai, L.H. Li, P. Cizek, P.D. Hodgson, Y. Chen, D. Fabijanic, W. Xu, Addit. Manuf. 46 (2021) 102173. |
| [25] |
L.A. Giannuzzi, F.A. Stevie, Micron 30 (1999) 197-204.
DOI URL |
| [26] | K. Kumar, A. Pooleery, K. Madhusoodanan, R.N. Singh, J.K. Chakravartty, B.K. Dutta, R.K. Sinha, Proc. Eng. 86 (2014) 899-909. |
| [27] |
M. Xia, D. Gu, G. Yu, D. Dai, H. Chen, Q. Shi, Int. J. Mach. Tools Manuf. 109 (2016) 147-157.
DOI URL |
| [28] |
M.S. Oh, J.Y. Lee, J.K. Park, Metall. Mater. Trans. A 35 (2004) 3071-3077.
DOI URL |
| [29] |
L. Huang, L. Wang, M. Qian, J. Zou, Scr. Mater. 141 (2017) 133-137.
DOI URL |
| [30] |
J.A. Otte, J. Zou, Y. Huang, M.S. Dargusch, ACS Appl. Nano Mater. 3 (2020) 8208-8215.
DOI URL |
| [31] |
J.A. Otte, J. Zou, R. Patel, M. Lu, M.S. Dargusch, Nanomaterials 10 (2020) 2480.
DOI URL |
| [32] | A. International, E112-10 standard test methods for determining grain size, 2010. |
| [33] |
H. Attar, M. Calin, L.C. Zhang, S. Scudino, J. Eckert, Mater. Sc. Eng. A 593 (2014) 170-177.
DOI URL |
| [34] | Q. Tao, Z. Wang, G. Chen, W. Cai, P. Cao, C. Zhang, W. Ding, X. Lu, T. Luo, X. Qu, M. Qin, Addit. Manuf. 34 (2020) 101198. |
| [35] |
S. Pouzet, P. Peyre, C. Gorny, O. Castelnau, T. Baudin, F. Brisset, C. Colin, P. Gadaud, Mater. Sci. Eng. A 677 (2016) 171-181.
DOI URL |
| [36] |
L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, J.P. Kruth, Acta Mater. 58 (2010) 3303-3312.
DOI URL |
| [37] |
D. Gu, Y. Shen, J. Alloy. Compd. 473 (2009) 107-115.
DOI URL |
| [38] |
Z. Dong, Y. Liu, W. Wen, J. Ge, J. Liang, Materials 12 (1) (2019) 50 (Basel).
DOI URL |
| [39] |
S. Greco, K. Gutzeit, H. Hotz, B. Kirsch, J.C. Aurich, Int. J. Adv. Manuf. Technol. 108 (2020) 1551-1562.
DOI URL |
| [40] |
G. Kasperovich, J. Haubrich, J. Gussone, G. Requena, Mater. Des. 105 (2016) 160-170.
DOI URL |
| [41] |
H. Attar, K.G. Prashanth, L.C. Zhang, M. Calin, I.V. Okulov, S. Scudino, C. Yang, J. Eckert, J. Mater. Sci. Technol. 31 (2015) 1001-1005.
DOI URL |
| [42] | S. Sun, M. Brandt, M. Easton, M. Brandt, in: Laser Additive Manufacturing, Woodhead Publishing, 2017, pp. 55-77. |
| [43] |
M.J. Bermingham, S.D. McDonald, M.S. Dargusch, Mater. Sci. Eng. A 719 (2018) 1-11.
DOI URL |
| [44] |
H. Shen, J. Yan, X. Niu, Materials 13 (2020) 4157.
DOI URL |
| [45] | K.C. Mills, B.J. Keene, R.F. Brooks, A. Shirali, Philos. Trans. R. Soc. 356 (1998) 911-925 S.-A. |
| [46] |
Y. Li, P. Bai, Y. Wang, J. Hu, Z. Guo, Mater. Des. 30 (2009) 1409-1412.
DOI URL |
| [47] | E. Fereiduni, M. Elbestawi, B. AlMangour, in: Additive Manufacturing of Emerging Materials, Springer International Publishing, Cham, 2019, pp. 111-177. |
| [48] | H. Asgharzadeh, N. Ehsani, ISRN Mater. Sci. 2011 (2011) 763296. |
| [49] |
H. Attar, S. Ehtemam-Haghighi, D. Kent, X. Wu, M.S. Dargusch, Mater. Sci. Eng. A 705 (2017) 385-393.
DOI URL |
| [50] |
B. Wysocki, P. Maj, A. Krawczyńska, K. Rożniatowski, J. Zdunek, K.J. Kurzy-dłowski, W. Święszkowski, J. Mater. Process. Technol. 241 (2017) 13-23.
DOI URL |
| [51] | E.O. Hall, Proc. Phys. Soc. Sect. B 64 (1951) 747-753. |
| [52] |
B. Vrancken, L. Thijs, J.P. Kruth, J. Van Humbeeck, J. Alloy. Compd. 541 (2012) 177-185.
DOI URL |
| [53] |
C.L. Li, C.S. Wang, P.L. Narayana, J.K. Hong, S.W. Choi, J.H. Kim, S.W. Lee, C.H. Park, J.T. Yeom, Q. Mei, J. Mater. Res. Technol. 11 (2021) 301-311.
DOI URL |
| [54] |
L.J. Huang, L. Geng, H.X. Peng, Prog. Mater. Sci. 71 (2015) 93-168.
DOI URL |
| [55] |
K. Panda, K.R. Chandran, Metall. Mater. Trans. A 34 (2003) 1371-1385.
DOI URL |
| [56] |
M.J. Ansari, D.S. Nguyen, H.S. Park, Materials 12 (2019) 1272.
DOI URL |
| [57] |
H.A. Wriedt, J.L. Murray, Bull. Alloy Phase Diagr. 8 (1987) 378-388.
DOI URL |
| [58] |
J.L. Murray, P.K. Liao, K.E. Spear, Bull. Alloy Phase Diagr. 7 (1986) 550-555.
DOI URL |
| [59] |
H. Feng, Y. Zhou, D. Jia, Q. Meng, Mater. Trans. 46 (2005) 575-580.
DOI URL |
| [60] |
P. Nandwana, S. Nag, D. Hill, J. Tiley, H.L. Fraser, R. Banerjee, Scr. Mater. 66 (2012) 598-601.
DOI URL |
| [61] |
J. Le, Y. Han, P. Qiu, G. Huang, J. Mao, W. Lu, Compos. B Eng. 212 (2021) 108682.
DOI URL |
| [62] |
L. Huang, M. Qian, Z. Liu, V.T. Nguyen, L. Yang, L. Wang, J. Zou, J. Alloy. Compd. 735 (2018) 2640-2645.
DOI URL |
| [63] | D.H. StJohn, M. Qian, M.A. Easton, P. Cao, Acta Mater. 59 (2011) 4 907-4 921. |
| [64] |
S. Tamirisakandala, R.B. Bhat, J.S. Tiley, D.B. Miracle, Scr. Mater. 53 (2005) 1421-1426.
DOI URL |
| [65] |
D. Hill, R. Banerjee, D. Huber, J. Tiley, H.L. Fraser, Scr. Mater. 52 (2005) 387-392.
DOI URL |
| [1] | Yinghao Zhou, Xiyu Yao, Wenfei Lu, Dandan Liang, Xiaodi Liu, Ming Yan, Jun Shen. Heat treatment of hot-isostatic-pressed 60NiTi shape memory alloy: Microstructure, phase transformation and mechanical properties [J]. J. Mater. Sci. Technol., 2022, 107(0): 124-135. |
| [2] | Jinlong Su, Xiankun Ji, Jin Liu, Jie Teng, Fulin Jiang, Dingfa Fu, Hui Zhang. Revealing the decomposition mechanisms of dislocations and metastable α' phase and their effects on mechanical properties in a Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2022, 107(0): 136-148. |
| [3] | Seungchan Cho, Junghwan Kim, Ilguk Jo, Jae Hyun Park, Jaekwang Lee, Hyun-Uk Hong, Bong Ho Lee, Wook Ryol Hwang, Dong-Woo Suh, Sang-Kwan Lee, Sang-Bok Lee. Effect of molybdenum on interfacial properties of titanium carbide reinforced Fe composite [J]. J. Mater. Sci. Technol., 2022, 107(0): 252-258. |
| [4] | Joung Sik Suh, Byeong-Chan Suh, Sang Eun Lee, Jun Ho Bae, Byoung Gi Moon. Quantitative analysis of mechanical properties associated with aging treatment and microstructure in Mg-Al-Zn alloys through machine learning [J]. J. Mater. Sci. Technol., 2022, 107(0): 52-63. |
| [5] | Yunwei Pan, Anping Dong, Yang Zhou, Dafan Du, Donghong Wang, Guoliang Zhu, Baode Sun. Effects of V addition on the mechanical properties at elevated temperatures in a γ"-strengthened NiCoCr-based multi-component alloy [J]. J. Mater. Sci. Technol., 2022, 107(0): 290-300. |
| [6] | Zhen Jiang, Ran Wei, Wenzhou Wang, Mengjia Li, Zhenhua Han, Shuhan Yuan, Kaisheng Zhang, Chen Chen, Tan Wang, Fushan Li. Achieving high strength and ductility in Fe50Mn25Ni10Cr15 medium entropy alloy via Al alloying [J]. J. Mater. Sci. Technol., 2022, 100(0): 20-26. |
| [7] | Zhiyuan Liu, Dandan Zhao, Pei Wang, Ming Yan, Can Yang, Zhangwei Chen, Jian Lu, Zhaoping Lu. Additive manufacturing of metals: Microstructure evolution and multistage control [J]. J. Mater. Sci. Technol., 2022, 100(0): 224-236. |
| [8] | Kaiju Lu, Ankur Chauhan, Dimitri Litvinov, Aditya Srinivasan Tirunilai, Jens Freudenberger, Alexander Kauffmann, Martin Heilmaier, Jarir Aktaa. Micro-mechanical deformation behavior of CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 237-245. |
| [9] | H.Y. Song, M.C. Lam, Y. Chen, S. Wu, P.D. Hodgson, X.H. Wu, Y.M. Zhu, A.J. Huang. Towards creep property improvement of selective laser melted Ni-based superalloy IN738LC [J]. J. Mater. Sci. Technol., 2022, 112(0): 301-314. |
| [10] | S.L. Lu, C.J. Todaro, Y.Y. Sun, T. Sun, T. Song, M. Brandt, M. Qian. Variant selection in additively manufactured alpha-beta titanium alloys [J]. J. Mater. Sci. Technol., 2022, 113(0): 14-21. |
| [11] | Jiaqi Dong, Chuxuan Yan, Yingzhi Chen, Wenjie Zhou, Yu Peng, Yue Zhang, Lu-Ning Wang, Zheng-Hong Huang. Organic semiconductor nanostructures: optoelectronic properties, modification strategies, and photocatalytic applications [J]. J. Mater. Sci. Technol., 2022, 113(0): 175-198. |
| [12] | Chen Chen, Yanzhou Fan, Wei Wang, Hang Zhang, Jialiang Hou, Ran Wei, Tao Zhang, Tan Wang, Mo Li, Shaokang Guan, Fushan Li. Synthesis of ultrafine dual-phase structure in CrFeCoNiAl0.6 high entropy alloy via solid-state phase transformation during sub-rapid solidification [J]. J. Mater. Sci. Technol., 2022, 113(0): 253-260. |
| [13] | Shuaishuai Liu, Han Liu, Xiang Chen, Guangsheng Huang, Qin Zou, Aitao Tang, Bin Jiang, Yuntian Zhu, Fusheng Pan. Effect of texture on deformation behavior of heterogeneous Mg-13Gd alloy with strength-ductility synergy [J]. J. Mater. Sci. Technol., 2022, 113(0): 271-286. |
| [14] | Zhichao Lou, Qiuyi Wang, Xiaodi Zhou, Ufuoma I. Kara, Rajdeep S. Mamtani, Hualiang Lv, Meng Zhang, Zhihong Yang, Yanjun Li, Chenxuan Wang, Solomon Adera, Xiaoguang Wang. An angle-insensitive electromagnetic absorber enabling a wideband absorption [J]. J. Mater. Sci. Technol., 2022, 113(0): 33-39. |
| [15] | Jun Xu, Bin Jiang, Yuehua Kang, Jun Zhao, Weiwen Zhang, Kaihong Zheng, Fusheng Pan. Tailoring microstructure and texture of Mg-3Al-1Zn alloy sheets through curve extrusion process for achieving low planar anisotropy [J]. J. Mater. Sci. Technol., 2022, 113(0): 48-60. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
