J. Mater. Sci. Technol. ›› 2022, Vol. 118: 128-135.DOI: 10.1016/j.jmst.2022.02.005
• Research Article • Previous Articles Next Articles
Huicai Xiea,b, Wenxia Suc, Haiming Luc, Zhaojun Moa,*(
), Dunhui Wangc, Hao Suna, Lu tiana, Xinqiang Gaoa, Zhenxing Lia, Jun Shena,b,d,*(
)
Received:2021-11-16
Revised:2022-01-30
Accepted:2022-02-09
Published:2022-08-10
Online:2022-02-25
Contact:
Zhaojun Mo,Jun Shen
About author:jshen@mail.ipc.ac.cn (J. Shen).Huicai Xie, Wenxia Su, Haiming Lu, Zhaojun Mo, Dunhui Wang, Hao Sun, Lu tian, Xinqiang Gao, Zhenxing Li, Jun Shen. Enhanced low-field magnetocaloric effect in Nb and Al co-substituted EuTiO3 compounds[J]. J. Mater. Sci. Technol., 2022, 118: 128-135.
| Compounds | CalculatedEFM (eV) | Calculated EAFM (eV) |
|---|---|---|
| EuTi0.875Nb0.0625Al0.0625O3 | -807.4973 | -807.4012 |
| EuTi0.8125Nb0.125Al0.0625O3 | -809.3939 | -808.5957 |
| EuTi0.75Nb0.125Al0.125O3 | -403.4682 | -403.4454 |
Table 1. The single point energies of FM and G-AFM states for EuTi0.875Nb0.0625Al0.0625O3, EuTi0.8125Nb0.125Al0.0625O3, and EuTi0.75Nb0.125Al0.125O3.
| Compounds | CalculatedEFM (eV) | Calculated EAFM (eV) |
|---|---|---|
| EuTi0.875Nb0.0625Al0.0625O3 | -807.4973 | -807.4012 |
| EuTi0.8125Nb0.125Al0.0625O3 | -809.3939 | -808.5957 |
| EuTi0.75Nb0.125Al0.125O3 | -403.4682 | -403.4454 |
Fig. 2. Room temperature XRD patterns and Rietveld refinement curves of (a) EuTi0.875Nb0.0625Al0.0625O3, (b) EuTi0.8125Nb0.125Al0.0625O3, (c) EuTi0.75Nb0.125Al0.125O3 compounds, and (d) the simulated crystal structure.
| Samples | A (Å) | Rp (%) | Rwp (%) | χ2 (%) |
|---|---|---|---|---|
| EuTi0.875Nb0.0625Al0.0625O3 | 3.9070(5) | 4.10 | 5.66 | 2.54 |
| EuTi0.8125Nb0.125Al0.0625O3 | 3.9181(9) | 4.83 | 7.34 | 5.13 |
| EuTi0.75Nb0.125Al0.125O3 | 3.9145(9) | 4.67 | 7.36 | 5.21 |
Table 2. The crystallographic parameters obtained from the Rietveld refinements for the EuTi0.875Nb0.0625Al0.0625O3, EuTi0.8125Nb0.125Al0.0625O3, and EuTi0.75Nb0.125Al0.125O3 compounds.
| Samples | A (Å) | Rp (%) | Rwp (%) | χ2 (%) |
|---|---|---|---|---|
| EuTi0.875Nb0.0625Al0.0625O3 | 3.9070(5) | 4.10 | 5.66 | 2.54 |
| EuTi0.8125Nb0.125Al0.0625O3 | 3.9181(9) | 4.83 | 7.34 | 5.13 |
| EuTi0.75Nb0.125Al0.125O3 | 3.9145(9) | 4.67 | 7.36 | 5.21 |
Fig. 3. ZFC and FC curves for (a) EuTi0.875Nb0.0625Al0.0625O3, (b) EuTi0.8125Nb0.125Al0.0625O3, (c) EuTi0.75Nb0.125Al0.125O3 compounds measured from 2 to 300 K in a field of 100 Oe, and (d) the first derivative of the ZFC curves between 2 and 30 K. Insets: the left indicates the ZFC and FC curves between 2 and 15 K, the right indicates the ZFC inverse susceptibility χ-1(T) curves fitted to the Curie-Weiss law.
Fig. 4. Isothermal M(H) curves measured in fields from 0 to 5 T at selected temperatures for (a) EuTi0.875Nb0.0625Al0.0625O3, (b) EuTi0.8125Nb0.125Al0.0625O3, (c) EuTi0.75Nb0.125Al0.125O3 compounds, and (d) the M(H) curves between 0 and 2 T at 2 K for the three compounds and EuTiO3.
Fig. 5. Temperature dependences of the -ΔSM under different magnetic field changes for (a) EuTi0.875Nb0.0625Al0.0625O3, (b) EuTi0.8125Nb0.125Al0.0625O3, (c) EuTi0.75Nb0.125Al0.125O3 compounds, and (d) the variation of RC value with magnetic field for the compounds and EuTiO3.
Fig. 6. Magnetocaloric parameters of the Nb and Al co-substituted compounds and some competitive magnetic refrigerants around liquid helium temperature.
| [1] |
L.W. Li, M. Yan, J. Alloy. Compd. 823 (2020) 153810.
DOI URL |
| [2] |
P. Mukherjee, S.E. Dutton, Adv. Funct. Mater. 27 (2017) 1701950.
DOI URL |
| [3] |
G.Z. Zhang, L.X. Weng, Z.Y. Hu, Y. Liu, R.X. Bao, P. Zhao, H. Feng, N. Yang, M.Y. Li, S.L. Zhang, S.L. Jiang, Q. Wang, Adv. Mater. 31 (2019) 1806642.
DOI URL |
| [4] |
R.V. Erp, R. Soleimanzadeh, L. Nela, G. Kampitsis, E. Matioli, Nature 585 (2020) 211-216.
DOI URL |
| [5] |
B. Yang, J.B. Trebbia, R. Baby, Ph. Tamarat, B. Lounis, Nat. Photonics 9 (2015) 658-662.
DOI URL |
| [6] |
G. Kawaguchi, A.A. Bardin, M. Suda, M. Uruichi, H.M. Yamamoto, Adv. Mater. 31 (2019) 1805715.
DOI URL |
| [7] |
A.Y. Vshivkov, A.V. Delkov, A.A. Kishkin, N.A. Lavrov, Chem. Pet. Eng. 55 (2019) 306-311.
DOI URL |
| [8] |
P. Jia, L.P. Duan, K. Wang, E.G. Wang, J. Mater. Sci. Technol. 35 (2019) 2283-2287.
DOI URL |
| [9] |
O. Tegus, E. Brück, K.H.J. Buschow, F.R. de Boer, Nature 415 (2002) 150-152.
DOI URL |
| [10] |
B.G. Shen, J.R. Sun, F.X. Hu, H.W. Zhang, Z.H. Cheng, Adv. Mater. 21 (2009) 4545-4564.
DOI URL |
| [11] |
Z.H. Dong, S. Huang, V. Ström, G. Chai, L.K. Varga, O. Eriksson, L. Vitos, J. Mater. Sci. Technol. 79 (2021) 15-20.
DOI URL |
| [12] |
Z.Q. Zhang, P.Y. Wang, H.W. Rong, L.W. Li, Dalton Trans. 48 (2019) 17792-17799.
DOI URL |
| [13] |
J.Z. Hao, F.X. Hu, H.B. Zhou, W.H. Liang, Z.B. Yu, F.R. Shen, Y.H. Gao, K.M. Qiao, J. Li, C. Zhang, B.J. Wang, J. Wang, J. He, J.R. Sun, B.G. Shen, Scr. Mater. 186 (2020) 84-88.
DOI URL |
| [14] | Y.J. Wang, Y.S. Du, Y.Q. Zhang, L. Li, L. Ma, J. Wang, J.T. Zhao, G.H. Rao, Inter-metallics 127 (2020) 106989. |
| [15] |
Z.Y. Li, F.F. Wang, P.Y. Zhu, D.Q. Wu, G.X. Cao, B. Zhai, Inorg. Chem. Commun. 120 (2020) 108166.
DOI URL |
| [16] | Z.Q. Dong, S.H. Yin, Struct. Ceram. Int. 46 (2020) 1099-1103. |
| [17] |
J. Brous, I. Fankuchen, E. Banks, Acta Crystallogr. 6 (1953) 67-70.
DOI URL |
| [18] |
M.W. Shafer, J. Appl. Phys. 36 (1965) 1145-1152.
DOI URL |
| [19] | T.R. McGuire, M.W. Shafer, R.J. Joenk, H.A. Alperin, S.J. Pickart, J. Appl. Phys. 37 (1966) 981-982. |
| [20] |
C.J. Fennie, K.M. Rabe, Phys. Rev. Lett. 97 (2006) 267602.
DOI URL |
| [21] |
T. Katsufuji, H. Takagi, Phys. Rev. B 64 (2001) 054415.
DOI URL |
| [22] |
J.H. Lee, L. Fang, E. Vlahos, X.L. Ke, Y.W. Jung, L.F. Kourkoutis, J.W. Kim, P.J. Ryan, T. Heeg, M. Roeckerath, V. Goian, M. Bernhagen, R. Uecker, P.C. Hammel, K.M. Rabe, S. Kamba, J. Schubert, J.W. Freeland, D.A. Muller, C.J. Fennie, P. Schiffer, V. Gopalan, E.J. Halperin, D.G. Schlom, Nature 466 (2010) 954-959.
DOI URL |
| [23] | Z. Porter, R.F. Need, K. Ahadi, Y. Zhao, Z.J. Xu, B.J. Kirby, J.W. Lynn, S. Stemmer, S.D. Wilson, Phys. Rev. Mater. 4 (2020) 054411. |
| [24] |
R. Das, R. Prabhu, N. Venkataramani, S. Prasad, L. Li, M.H. Phan, V. Keppens, D. Mandrus, H. Srikanth, J. Alloy. Compd. 850 (2021) 156819.
DOI URL |
| [25] |
Z.J. Mo, J. Shen, L. Li, Y. Liu, C.C. Tang, F.X. Hu, J.R. Sun, B.G. Shen, Mater. Lett. 158 (2015) 282-284.
DOI URL |
| [26] |
A. Midya, P. Mandal, K. Rubi, R.F. Chen, J.S. Wang, R. Mahendiran, G. Lorusso, M. Evangelisti, Phys. Rev. B 93 (2016) 094422.
DOI URL |
| [27] |
R. Ranjan, H.S. Nabi, R. Pentcheva, J. Phys. Condens. Matter 19 (2007) 406217.
DOI URL |
| [28] |
H. Akamatsu, Y. Kumagai, F. Oba, K. Fujita, H. Murakami, K. Tanaka, I. Tanaka, Phys. Rev. B 83 (2011) 214421.
DOI URL |
| [29] |
T. Wei, Q.G. Song, Q.J. Zhou, Z.P. Li, X.L. Qi, W.P. Liu, Y.R. Guo, J.M. Liu, Appl. Surf. Sci. 258 (2011) 599-603.
DOI URL |
| [30] |
W.H. Jiang, Z.J. Mo, J.W. Luo, Z.X. Zheng, Q.J. Lu, G.D. Liu, J. Shen, L. Li, Chin. Phys. B 29 (2020) 037502.
DOI URL |
| [31] |
W. Zhang, Z.J. Mo, W.H. Jiang, Z.H. Hao, J.W. Luo, R.J. Cheng, G.D. Liu, L. Li, J. Shen, J. Magn. Magn. Mater. 492 (2019) 165684.
DOI URL |
| [32] |
S. Zeng, W.H. Jiang, H. Yang, Z.J. Mo, J. Shen, L. Li, Chin. Phys. B 29 (2020) 127501.
DOI URL |
| [33] |
L. Li, H.D. Zhou, J.Q. Yan, D. Mandrus, V. Keppens, APL Mater. 2 (2014) 110701.
DOI URL |
| [34] |
R. Zhao, Y.D. Ji, C. Yang, W.W. Li, Y.Y. Zhu, W. Zhang, H. Lu, Y.C. Jiang, G.Z. Liu, J.W. Hong, H.Y. Wang, H. Yang, Ceram. Int. 46 (2020) 19990-19995.
DOI URL |
| [35] | P.H.T. Philipsen, G. te Velde, E.J. Baerends, J.A. Berger, P.L. de Boeij, M. Franchini, J.A. Groeneveld, E.S. Kadantsev, R. Klooster, F. Kootstra, P. Romaniello, M. Raupach, D.G. Skachkov, J.G. Snijders, C.J.O. Verzijl, J.A. Celis Gil, J.M. Thijssen, G. Wiesenekker, T. Ziegler, BAND 2018, SCM, Theoretical Chemistry, Vrije Uni- versiteit, Amsterdam, The Netherlands, 2018 https://www.scm.com/product/band_periodicdft/. |
| [36] |
G. Velde, E.J. Baerends, Phys. Rev. B 44 (1991) 7888-7903.
PMID |
| [37] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.
DOI PMID |
| [38] |
J. Head, P. Manuel, F. Orlandi, M. Jeong, M.R. Lees, R.K. Li, C. Greaves, Chem. Mater. 32 (2020) 10184-10199.
DOI URL |
| [39] |
V.K. Pecharsky, K.A. Gschneidner, J. Appl. Phys. 86 (1999) 565-575.
DOI URL |
| [40] |
Z.J. Mo, J. Shen, L.Q. Yan, J.F. Wu, L.C. Wang, Appl. Phys. Lett. 102 (2013) 192407.
DOI URL |
| [41] |
Y.Y. Yu, D.N. Petrov, K.C. Park, B.T. Huy, P.T. Long, J. Magn. Magn. Mater. 519 (2021) 167452.
DOI URL |
| [42] |
H. Zhang, C.F. Xing, H. Zhou, X.Q. Zheng, X.F. Miao, L.H. He, J. Chen, H.L. Lu, E.K. Liu, W.T. Han, H.G. Zhang, Y.X. Wang, Y. Long, L.V. Eijk, E. Brück, Acta Mater. 193 (2020) 210-220.
DOI URL |
| [43] |
J.W. Xu, X.Q. Zheng, S.X. Yang, L. Xi, J.Y. Zhang, Y.F. Wu, S.G. Wang, J. Liu, L.C. Wang, Z.Y. Xu, B.G. Shen, J. Alloy. Compd. 843 (2020) 155930.
DOI URL |
| [44] |
L.D. Griffith, Y. Mudryk, J. Slaughter, V.K. Pecharsky, J. Appl. Phys. 123 (2018) 034902.
DOI URL |
| [45] |
Z.Q. Zhang, P.Y. Wang, N. Wang, X.J. Wang, P. Xu, L.W. Li, Dalton Trans. 49 (2020) 8764-8773.
DOI URL |
| [46] |
D. Guo, Y.K. Zhang, B.B. Wu, H.F. Wang, R.G. Guan, X. Li, Z.M. Ren, J. Alloy. Compd. 830 (2020) 154666.
DOI URL |
| [47] |
B.B. Wu, D. Guo, Y.M. Wang, Y.K. Zhang, Ceram. Int. 46 (2020) 11988-11993.
DOI URL |
| [48] |
L.W. Li, P. Xu, S.K. Ye, Y. Li, G.D. Liu, D.X. Huo, M. Yan, Acta Mater. 194 (2020) 354-365.
DOI URL |
| [1] | Xuefei Miao, Yong Gong, Fengqi Zhang, Yurong You, Luana Caron, Fengjiao Qian, Wenhui Guo, Yujing Zhang, Yuanyuan Gong, Feng Xu, Niels van Dijk, Ekkes Brück. Enhanced reversibility of the magnetoelastic transition in (Mn,Fe)2(P,Si) alloys via minimizing the transition-induced elastic strain energy [J]. J. Mater. Sci. Technol., 2022, 103(0): 165-176. |
| [2] | Liliang Shao, Lin Xue, Qiang Luo, Kuibo Yin, Zirui Yuan, Mingyun Zhu, Tao Liang, Qiaoshi Zeng, Litao Sun, Baolong Shen. Heterogeneous GdTbDyCoAl high-entropy alloy with distinctive magnetocaloric effect induced by hydrogenation [J]. J. Mater. Sci. Technol., 2022, 109(0): 147-156. |
| [3] | Song Yang, Yong Hu. Inverse dependence of exchange bias and coercivity on cooling field caused by interfacial randomization in nanosystems with Co sparsely distributed in CoFe2O4 matrix [J]. J. Mater. Sci. Technol., 2022, 98(0): 258-267. |
| [4] | Weibin Cui, Guiquan Yao, Shengyu Sun, Qiang Wang, Sen Yang. Unconventional metamagnetic phase transition in R2In (R=Nd, Pr) with lambda-like specific heat and nonhysteresis [J]. J. Mater. Sci. Technol., 2022, 101(0): 80-84. |
| [5] | He Zhou, Dekun Wang, Zhe Li, Junzhuang Cong, Ziyuan Yu, Shuo Zhao, Peng Jiang, Daoyong Cong, Xinqi Zheng, Kaiming Qiao, Hu Zhang. Large enhancement of magnetocaloric effect induced by dual regulation effects of hydrostatic pressure in Mn0.94Fe0.06NiGe compound [J]. J. Mater. Sci. Technol., 2022, 114(0): 73-80. |
| [6] | Pengtao Cheng, Zhenjia Zhou, Jiaxing Chen, Zongbin Li, Bo Yang, Kun Xu, Zhe Li, Jun Li, Zhengming Zhang, Dunhui Wang, Suxin Qian, Youwei Du. Combining magnetocaloric and elastocaloric effects in a Ni45Co5Mn37In13 alloy [J]. J. Mater. Sci. Technol., 2021, 94(0): 47-52. |
| [7] | Jie Guo, Xinguo Zhao, Naikun Sun, Xiaofei Xiao, Wei Liu, Zhidong Zhang. Tunable quantum Shubnikov-de Hass oscillations in antiferromagnetic topological semimetal Mn-doped Cd3As2 [J]. J. Mater. Sci. Technol., 2021, 76(0): 247-253. |
| [8] | Xuanwei Zhao, Xianming Zheng, Xiaohua Luo, Fei Gao, Hai Zeng, Guang Yu, Sajjad Ur Rehman, Changcai Chen, Shengcan Ma, Weijun Ren, Zhenchen Zhong. Large magnetocaloric effect and magnetoresistance in ErNi single crystal [J]. J. Mater. Sci. Technol., 2021, 86(0): 56-63. |
| [9] | Zhipan Ma, Xiaoshi Dong, Zhenqian Zhang, Lingwei Li. Achievement of promising cryogenic magnetocaloric performances in La1-xPrxFe12B6 compounds [J]. J. Mater. Sci. Technol., 2021, 92(0): 138-142. |
| [10] | Jing Bai, Die Liu, Jianglong Gu, Xinjun Jiang, Xinzeng Liang, Ziqi Guan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Excellent mechanical properties and large magnetocaloric effect of spark plasma sintered Ni-Mn-In-Co alloy [J]. J. Mater. Sci. Technol., 2021, 74(0): 46-51. |
| [11] | Kai Liu, Shengcan Ma, Yuxi Zhang, Hai Zeng, Guang Yu, Xiaohua Luo, Changcai Chen, Sajjad Ur Rehman, Yongfeng Hu, Zhenchen Zhong. Magnetic-field-driven reverse martensitic transformation with multiple magneto-responsive effects by manipulating magnetic ordering in Fe-doped Co-V-Ga Heusler alloys [J]. J. Mater. Sci. Technol., 2020, 58(0): 145-154. |
| [12] | Lichuan Jin, Caiyun Hong, Dainan Zhang, Peng Gao, Yiheng Rao, Gang Wang, Qinghui Yang, Zhiyong Zhong, Huaiwu Zhang. Synthesis of yttrium iron garnet/bismuth quantum dot heterostructures with localized plasmon enhanced magneto-optical performance [J]. J. Mater. Sci. Technol., 2020, 51(0): 32-39. |
| [13] | Long Hou, Xingdu Fan, Qianqian Wang, Weiming Yang, Baolong Shen. Microstructure and soft-magnetic properties of FeCoPCCu nanocrystalline alloys [J]. J. Mater. Sci. Technol., 2019, 35(8): 1655-1661. |
| [14] | Peng Jia, Leipeng Duan, Kang Wang, Engang Wang. Magnetic properties and magnetocaloric effects of Gd65(Cu,Co,Mn)35 amorphous ribbons [J]. J. Mater. Sci. Technol., 2019, 35(10): 2283-2287. |
| [15] | Zhishuai Xu, Yuting Dai, Yue Fang, Zhiping Luo, Ke Han, Changjiang Song, Qijie Zhai, Hongxing Zheng. High-temperature phase transition behavior and magnetocaloric effect in a sub-rapidly solidified La-Fe-Si plate produced by centrifugal casting [J]. J. Mater. Sci. Technol., 2018, 34(8): 1337-1343. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
