J. Mater. Sci. Technol. ›› 2020, Vol. 51: 32-39.DOI: 10.1016/j.jmst.2020.03.025
• Research Article • Previous Articles Next Articles
Lichuan Jina,*(), Caiyun Hongb, Dainan Zhanga, Peng Gaoc,d, Yiheng Raoa, Gang Wanga, Qinghui Yanga, Zhiyong Zhonga, Huaiwu Zhanga,*(
)
Received:
2020-01-20
Revised:
2020-02-01
Accepted:
2020-02-01
Published:
2020-08-15
Online:
2020-08-11
Contact:
Lichuan Jin,Huaiwu Zhang
Lichuan Jin, Caiyun Hong, Dainan Zhang, Peng Gao, Yiheng Rao, Gang Wang, Qinghui Yang, Zhiyong Zhong, Huaiwu Zhang. Synthesis of yttrium iron garnet/bismuth quantum dot heterostructures with localized plasmon enhanced magneto-optical performance[J]. J. Mater. Sci. Technol., 2020, 51: 32-39.
Fig. 1. (a) STEM image of Bi-QDs grown on a YIG film surface; the scale bar is 100 nm. (b) Bright-field (BF) image of a single self-assembled Bi-QD on a YIG film; the scale bar is 10 nm. (c) Expanded view of the BF image indicated by the square in (a); the scale bar is 5 nm. (d-g) EDX elemental mapping of bismuth, yttrium, iron, and oxygen, respectively; each scale bar is 10 nm.
Sample | Number per μm2 | Mean height (nm) | Mean diameter (nm) |
---|---|---|---|
YIG/Bi-QD(10) | 4.9 ± 0.1 | 18.1 ± 0.1 | 29.8 ± 0.1 |
YIG/Bi-QD(20) | 6.6 ± 0.1 | 31.9.±0.1 | 36.2 ± 0.1 |
YIG/Bi-QD(30) | 12.7 ± 0.1 | 43.2 ± 0.1 | 55.1 ± 0.1 |
YIG/Bi-QD(40) | 25.8 ± 0.1 | 45.8 ± 0.1 | 57.7 ± 0.1 |
YIG/Bi-QD(50) | 38.5 ± 0.1 | 47.9 ± 0.1 | 60.4 ± 0.1 |
Table 1 Size and distribution of different samples as determined by atomic force microscopy and STEM. Each number in parentheses denotes the Bi-QD growth time (time, min).
Sample | Number per μm2 | Mean height (nm) | Mean diameter (nm) |
---|---|---|---|
YIG/Bi-QD(10) | 4.9 ± 0.1 | 18.1 ± 0.1 | 29.8 ± 0.1 |
YIG/Bi-QD(20) | 6.6 ± 0.1 | 31.9.±0.1 | 36.2 ± 0.1 |
YIG/Bi-QD(30) | 12.7 ± 0.1 | 43.2 ± 0.1 | 55.1 ± 0.1 |
YIG/Bi-QD(40) | 25.8 ± 0.1 | 45.8 ± 0.1 | 57.7 ± 0.1 |
YIG/Bi-QD(50) | 38.5 ± 0.1 | 47.9 ± 0.1 | 60.4 ± 0.1 |
Fig. 2. (a) Schematic of the ferromagnetic resonance measurement. (b) H dependence of S21 in the YIG/Bi-QD specimen; the excitation frequency is 11 GHz, and the crystal orientation of the YIG substrate is (111). (c) Schematic of the angular-dependent FMR measurement. (d) Bi-QD growth-time dependence of the magnetic anisotropy field Hk for the crystal orientations (100) and (111) in YIG/Bi-QDs (marked by red dots and blue squares, respectively); the inset shows the resonance field HFMR as a function of azimuthal angle ΦH for YIG/Bi-QD (40) samples with substrates YIG (100) (red circles) and YIG (111) (blue squares). (e) Bi-QD growth-time dependence of the extracted inhomogeneous broadening ΔH0 (black squares), effective damping parameter αeff (blue diamonds), and effective magnetization 4πMeff (red dots) in YIG(111)/Bi-QDs.
Fig. 3. (a) Raman spectra of the vibrational modes of the YIG/Bi-QD specimen; the red fitting lines show the YIG modes for a laser wavelength of 514 nm and laser power of 2 mW. (b) Raman spectra for the (111) orientation of the GGG substrate. Bi-QD growth-time dependence of the Raman intensity for two A1g modes in GGG at (c) 355 cm-1 and (d) 741 cm-1.
Fig. 4. (a) Fourier transform infrared spectroscopy of the YIG/Bi-QD system; the break in the spectra omits a featureless region. (b) Fluorescence spectra of the YIG/Bi-QD system obtained under 220 nm laser excitation; the inset shows Bi-QD growth-time dependence of the fluorescence peak in each sample.
Fig. 5. Localized plasmon mapping. (a) Cross-sectional STEM image of the YIG/Bi-QD hybrid system. (b) High-angle annular dark-field image of an electron beam transmitted from the vacuum into a single Bi-QD and into the YIG film (the route of the incident electron beam is shown using a yellow arrow). (c) Spatially distributed EEL spectra of the YIG/Bi-QD system with an incident electron beam energy of 60 keV. (d) Position dependences of plasmon intensity and energy with line intensity profiles taken along the line X-X′ in (b); the distance from the vacuum to the Bi-QD is ~7 nm, and the height of a single Bi-QD is ~25 nm. EEL probability maps of the YIG/Bi-QD hybrid system corresponding to different electron energy intervals: (e) 3-7 eV; (f) 16-23 eV; (g) 28-32 eV.
Fig. 6. (a) Schematic of the enhanced polar magneto-optical Kerr effect in a YIG/Bi-QD hybrid system. (b) Enhanced magneto-optical Kerr rotation was observed with the introduction of Bi-QDs. (c) Histogram of Bi growth-time dependence of the polar Kerr signal (red triangles mark reflections); the inset is a schematic of the enhanced magneto-optical Kerr effect in a YIG/Bi-QD hybrid system. (d) Polar magneto-optical Kerr rotation curves for a LBIG/Bi-QD hybrid system with varying Bi-QD growth time.
[1] | O. Hosten, P. Kwiat , Science, 319(2008), pp. 787-790. |
[2] | D. Pan, H. Wei, L. Gao, H. Xu, Phys. Rev. Lett., 117 ( 2016), Article 166803. |
[3] | H. Zhang, M. Kang, X. Zhang, W. Guo, C. Lv, Y. Li, W. Zhang, J. Han, Adv. Mater ., 29 ( 2016), Article 1604252. |
[4] | Z. Li, Y. Li, T. Han, X. Wang, Y. Yu, B. Tay, Z. Liu, Z. Fang , ACS Nano, 11(2017), pp. 1165-1171. |
[5] | L.W. Clark, L.C. Ha, C.Y. Xu, C. Chin, Phys. Rev. Lett., 115 ( 2015), Article 155301. |
[6] | M. Liu, X. Zhang , Nat. Photon., 7(2013), pp. 429-430. |
[7] | V.I. Belotelov, I.A. Akimov, M. Pohl, V.A. Kotov, S. Kasture, A.S. Vengurlekar, A.V. Gopal, D.R. Yakovlev, A.K. Zvezdin, M. Bayer , Nat. Nanotechnol., 6(2011), pp. 370-376. |
[8] | X. Yin, Z. Ye, J. Rho, Y. Wang, X. Zhang , Science, 339(2013), pp. 1405-1407. |
[9] | P.K. Jain, Y. Xiao, R. Walsworth, A.E. Cohen , Nano Lett., 9(2009), pp. 1644-1650. |
[10] | J.Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V.I. Belotelov, B. Stritzker, H. Giessen , Nat. Commun., 4(2013), p. 1599. |
[11] | V.V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.M. Garcia-Martin, T.Thomay. A. Leitenstorfer, R. Bratschitsch, Nat. Photon., 4(2010), pp. 107-111. |
[12] | V.I. Belotelov, I.A. Akimov, M. Pohl, V.A. Kotov, S. Kasture, A.S. Vengurlekar, A.V. Gopal, D.R. Yakovlev, A.K. Zvezdin, M. Bayer , Nat. Nanotechnol., 6(2011), pp. 370-376. |
[13] | A.M. Humphries, T. Wang, E.R.J. Edwards, S.R. Allen, J.M. Shaw, H.T. Nembach, J.Q. Xiao, T.J. Silva, X. Fan, Nat. Commun., 8(2017), p. 911. |
[14] | M. Montazeri, P. Upadhyaya, M.C. Onbasli, G. Yu, K.L. Wong, M. Lang, Y. Fan, X. Li, P. KhaliliAmiri, R.N. Schwartz, C.A. Ross, K.L. Wang , Nat. Commun., 6(2015), p. 8958. |
[15] | P. Hansen, K. Witter, W. Tolksdorf , Phys. Rev. B, 27(1983), p. 6608. |
[16] | A. Kehlberger, K. Richter, M.C. Onbasli, G. Jakob, D.H. Kim, T. Goto, C.A. Ross, G. G?tz, G. Reiss, T. Kuschel, M. Kl?ui, Phys. Rev. Appl., 4 (2015),Article 014008. |
[17] | M.C. Onbasli, L. Beran, M. Zahradnik, M. Kucera, R. Antos, J. Mistrik, G.F. Dionne, M. Veis, C.A. Ross , Sci. Rep., 6(2016), p. 23640. |
[18] | J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, L. Bi , ACS Photonics, 4(2017), pp. 1403-1412. |
[19] | H.B. Vasili, B. Casals, R. Cichelero, F. Macià, J. Geshev, P. Gargiani, M. Valvidares, J. Herrero-Martin, E. Pellegrin, J. Fontcuberta, G. Herranz, Phys. Rev. B, 96 ( 2017), Article 014433. |
[20] | Y.M. Koroteev, G. Bihlmayer, J.E. Gayone, E.V. Chulkov, S. Blugel, P.M. Echenique, P. Hofmann, Phys. Rev. Lett., 93 ( 2004),Article 046403. |
[21] | S. Murakami, Phys. Rev. Lett., 97 ( 2006), Article 236805. |
[22] | R.W. Zhang, C.W. Zhang, W.X. Ji, S.S. Yan, Y.G. Yao , Nanoscale, 9(2017), pp. 8207-8212. |
[23] | W.K. Tse, A.H. MacDonald, Phys. Rev. Lett., 105 ( 2010), Article 057401. |
[24] | J. Toudert, R. Serna, M.J. de Castro, J. Phys. Chem. C, 116(2012), pp. 20530-20539. |
[25] | A. Layadi, W. Cain, J.W. Lee, J. Artman , IEEE Trans. Magn., 23(1987), pp. 2993-2995. |
[26] | H. Wang, C. Du, P.C. Hammel, F. Yang, Phys. Rev. B, 89 ( 2014), Article 134404. |
[27] | A. Crépieux, C. Lacroix, J. Magn. Magn. Mater., 182(1998), pp. 341-349. |
[28] | K. Di, V.L. Zhang, H.S. Lim, S.C. Ng, M.H. Kuok, J. Yu, J. Yoon, X. Qiu, H. Yang, Phys. Rev. Lett., 114 ( 2015), Article 047201. |
[29] | R.A. Gallardo, D. Cortés-Ortu?o, T. Schneider, A. Roldán-Molina, F. Ma, R.E. Troncoso, K. Lenz, H. Fangohr, J. Lindner, P. Landeros, Phys. Rev. Lett., 122 ( 2019), Article 067204. |
[30] | T. Matsumoto, Y.G. So, Y. Kohno, Y. Ikuhara, N. Shibata , Nano Lett., 18(2018), pp. 754-762. |
[31] | O. Boulle, J. Vogel, H. Yang, S. Pizzini, D. de Souza Chaves, A. Locatelli, T.O. Mente, A. Sala, L.D. Buda-Prejbeanu, O. Klein, M. Belmeguenai, Y. Roussigné, A. Stashkevich, S.M. Chérif, L. Aballe, M. Foerster, M. Chshiev, S. Auffret, I.M. Miron, G. Gaudin, Nat. Nanotechnol., 11(2016), pp. 449-454. |
[32] | A. Takayama, T. Sato, S. Souma, T. Takahashi, Phys. Rev. Lett., 106 ( 2011), Article 166401. |
[33] | J.P. Hanke, F. Freimuth, C. Niu, S. Blügel, Y. Mokrousov , Nat. Commun., 8(2017), p. 1479. |
[34] | C. Niu, G. Bihlmayer, H. Zhang, D. Wortmann, S. Blugel, Y. Mokrousov, Phys. Rev. B, 91 ( 2015),041303(R). |
[35] | S.S. Kalarickal, P. Krivosik, M.Z. Wu, C.E. Patton, M.L. Schneider, P. Kabos, T.J. Silva, J.P. Nibarger, J. Appl. Phys., 99 ( 2006), Article 093909. |
[36] | Y. Tserkovnyak, A. Brataas, G.E.W. Bauer, B.I. Halperin, Rev. Mod. Phys., 77(2005), pp. 1375-1421. |
[37] | Y. Sun, H. Chang, M. Kabatek, Y.Y. Song, Z. Wang, M. Jantz, W. Schneider, M. Wu, E. Montoya, B. Kardasz, B. Heinrich, S.G.T. Velthuis, H. Schultheiss, A. Hoffmann, Phys. Rev. Lett., 111 ( 2013),Article 106601. |
[38] | H.L. Wang, C.H. Du, Y. Pu, R. Adur, P.C. Hammel, F.Y. Yang, Phys. Rev. Lett ., 112 ( 2014), Article 197201. |
[39] | P.B.A. Fechine, E.N. Silva, A.S.D. Menezes, J. Derov, J.W. Stewart, A.J. Drehman, I.F. Vasconcelos, A.P. Ayala, L.P. Cardoso, A.S.B. Sombra, J. Phys. Chem. Solids, 70(2009), pp. 202-209. |
[40] | L. Fernandez-Garcia, M. Suarez, J.L. Menendez, J. Alloys Compd., 495(2010), pp. 196-199. |
[41] | D.V.M. Paiva, M.A.S. Silva, T.S. Ribeiro, I.F. Vasconcelos, A.S.B. Sombra, J.C. Góes, P.B.A. Fechine, J. Alloys Compd., 644(2015), pp. 763-769. |
[42] | V. Monteseguro, P. Rodríguez-Hernández, R. Vilaplana, F.J. Manjón, V. Venkatramu, D. Errandonea, V. Lavín, A. Muoz, J. Phys. Chem. C, 118(2014), pp. 13177-13185. |
[43] | J.T. Krug, G.D. Wang, S.R. Emory, S. Nie, J. Am. Chem. Soc., 121(1999), pp. 9208-9214. |
[44] | J. Zhang, X. Li, X. Sun, Y. Li, J. Phys. Chem. B, 109(2005), pp. 12544-12548. |
[45] | H. Lu, H. Zhang, X. Yu, S. Zeng, K.T. Yong, H.P. Ho , Plasmonics, 7(2012), pp. 167-173. |
[46] | J. Toudert, R. Serna, M.J. de Castro, J. Phys. Chem. C, 116(2012), pp. 20530-20539. |
[47] | A.G. Bezerra, P. Cavassin, T.N. Machado, T.D. Woiski, R. Caetano, W.H. Schreiner, J. Nanopart. Res., 19(2017), p. 362. |
[48] | T. Gaudisson, U. Acevedo, S. Nowak, N. Yaacoub, J.M. Greneche, S. Ammar, R. Valenzuela, J. Am. Ceram. Soc., 96(2013), pp. 3094-3099. |
[49] | P. Hofmann , Prog. Surf. Sci., 81(2006), pp. 191-245. |
[50] | F. Schindler, Z. Wang, M.G. Vergniory, A.M. Cook, A. Murani, S. Sengupta, A.Y. Kasumov, R. Deblock, S. Jeon, I. Drozdov, H. Bouchiat, S. Guéron, A. Yazdani, B.A. Bernevig, T. Neupert , Nat. Phys., 14(2018), pp. 918-924. |
[51] | H. Lu, S.D. Li, J. Mater. Chem. C, 1(2013), pp. 3677-3680. |
[52] | J.F. Li, C.Y. Li, R.F. Aroca , Chem. Soc. Rev., 46(2017), pp. 3962-3979. |
[53] | P.F. Guo, S. Wu, Q.J. Ren, J. Lu, Z. Chen, S.J. Xiao, Y.Y. Zhu, J. Phys. Chem. Lett., 1(2010), pp. 315-318. |
[54] | F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, Z. Wu , Chem. Commun., 50(2014), pp. 10386-10389. |
[55] | J. Toudert, R. Serna, I. Camps, J. Wojcik, P. Mascher, E. Rebollar, T.A. Ezquerra, J. Phys. Chem. C, 121(2017), pp. 3511-3521. |
[56] | R. Tediosi, N.P. Armitage, E. Giannini, D. van der Marel, Phys. Rev. Lett., 99 (2007), Article 016406. |
[57] | V.B. Nascimento, V.E. de Carvalho, R. Paniago, E.A. Soares, L.O. Ladeira, H.D. Pfannes, J. Electron Spectrosc, Relat. Phenom., 104(1999), pp. 99-107. |
[58] | G. Armelles, A. Cebollada, A. García-Martín, M.U. González , Adv. Opt. Mater., 1(2013), pp. 10-35. |
[59] | K. Lodewijks, N. Maccaferri, T. Pakizeh, R.K. Dumas, I. Zubritskaya, J. Akerman, P. Vavassori, A. Dmitriev , Nano Lett., 14(2014), pp. 7207-7214. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||