J. Mater. Sci. Technol. ›› 2022, Vol. 98: 258-267.DOI: 10.1016/j.jmst.2021.04.067
• Research Article • Previous Articles Next Articles
Received:
2020-11-13
Revised:
2021-03-31
Accepted:
2021-04-29
Published:
2022-01-30
Online:
2022-01-25
Contact:
Yong Hu
About author:
*E-mail address: huyong@mail.neu.edu.cn (Y. Hu).Song Yang, Yong Hu. Inverse dependence of exchange bias and coercivity on cooling field caused by interfacial randomization in nanosystems with Co sparsely distributed in CoFe2O4 matrix[J]. J. Mater. Sci. Technol., 2022, 98: 258-267.
Fig. 1. Energy density as a function of azimuthal angle under selected effective fields for ϑ = 57.3° (1 rad), where the energy barrier is labelled. Inset shows the normalized critical field as a function of ϑ.
Fig. 3. Hysteresis loop at T=50 K after cooling under HFC=4 T at selected JCo/CFO for (a) PCo=0.11 and (b) PCo=0.30. (c) Exchange bias field (HE) and (d) coercivity (HC) as a function of JCo/CFO for PCo=0.11 and PCo=0.30.
Fig. 4. Number of magnetic moment bonds between Co and Co, between CFO and CFO, and between Co and CFO as a function of PCo, where L is the cell length, Z is the coordination number, and error bars are determined by 30 sets of independent initial, random configurations. Insets show the two-dimensional views of configurations with PCo = 0.10 and 0.20, where red and blue spheres denote the magnetic moments of Co and CFO and colored dashed lines are bonds between them.
Fig. 5. Hysteresis loop at T=50 K after cooling under HFC=4 T at selected PCo for (a) JCFO=0 and (b) JCFO=4 meV. (c) Exchange bias field (HE) and (d) coercivity (HC) as a function of PCo. Inset shows the exchange bias field linearly inversely proportional to PCo.
Fig. 8. (a, b) Magnetization of CFO at Co/CFO interface during Co magnetization reversal, indicated by purple rings in (c, d), as a function of cooling field at PCo=0.11 for (a) JCFO=0 and (b) JCFO=4 meV at T=50 K. (c, d) Representative hysteresis loops of the whole CFO component and the CFO component at Co/CFO interface under HFC=0.5 T, where blue curves indicate the overlap of two hysteresis loops of CFO and the hysteresis loops of Co are also given (gray). Error bars are determined by 30 sets of independent initial, random configurations.
[1] |
W.H. Meiklejohn, C.P. Bean, Phys. Rev. 102 (1956) 1413-1414.
DOI URL |
[2] | V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord, J. Nogués, Na-ture 423 (2003) 850-853. |
[3] |
J. Nogués, I.K. Schuller. J. Magn. Magn. Mater. 192 (1999) 203-232.
DOI URL |
[4] |
A.E. Berkowitz, K. Takano. J. Magn. Magn. Mater. 200 (1999) 552-570.
DOI URL |
[5] |
W. Zhang, K.M. Krishnan, Mater. Sci. Eng. R 105 (2016) 1-20.
DOI URL |
[6] |
P.K. Manna, S.M. Yusuf, Phys. Rep. 535 (2014) 61-99.
DOI URL |
[7] |
J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J.S. Muñoz, M.D. Baró, Phys. Rep. 422 (2015) 65-117.
DOI URL |
[8] |
A. López-Ortega, M. Estrader, G. Salazar-Alvarez, A.G. Roca, J. Nogués, Phys. Rep. 553 (2015) 1-32.
DOI URL |
[9] |
Ó. Iglesias, A. Labarta, X. Batlle. J. Nanosci. Nanotechnol. 8 (2008) 2761-2780.
PMID |
[10] |
T. Maity, S. Goswami, D. Bhattacharya, S. Roy, Phys. Rev. Lett. 110 (2013) 107201.
DOI URL |
[11] |
B.M. Wang, Y. Liu, P. Ren, B. Xia, K.B. Ruan, J.B. Yi, J. Ding, X.G. Li, L. Wang, Phys. Rev. Lett. 106 (2011) 077203.
DOI URL |
[12] |
A.K. Nayak, M. Nicklas, S. Chadov, C. Shekhar, Y. Skourski, J. Winterlik, C. Felser, Phys. Rev. Lett. 110 (2013) 127204.
PMID |
[13] |
N. Domingo, A.M. Testa, D. Fiorani, C. Binns, S. Baker, J. Tejada. J. Magn. Magn. Mater. 316 (2007) 155-158.
DOI URL |
[14] | C. Binns, N. Domingo, A.M. Testa, D. Fiorani, K.N. Trohidou, M. Vasilakaki, J.A. Blackman, A.M. Asaduzzaman, S. Baker, M. Roy, D. Peddis, J. Phys.: Con-dens. Matter 22 (2010) 436005. |
[15] |
N. Domingo, D. Fiorani, A.M. Testa, C. Binns, S. Baker, J. Tejada, J. Phys. D: Appl. Phys. 41 (2008) 134009.
DOI URL |
[16] |
D. Peddis, M. Hudl, C. Binns, D. Fiorani, P. Nordblad, J. Phys.: Conf. Ser. 200 (2010) 072074.
DOI URL |
[17] |
S. Giri, M. Patra, J. Phys.: Condens. Matter 23 (2011) 073201.
DOI URL |
[18] | M. Dolci, Y. Liu, X. Liu, C. Leuvrey, A. Derory, D. Begin, S. Begin-Colin, B.P. Pi-chon, Adv.Funct. Mater. 28 (2018) 1706957. |
[19] |
Y. Liu, X. Liu, M. Dolci, C. Leuvrey, E. Pardieu, A. Derory, D. Begin, S. Begin-Colin, B.P. Pichon, J. Phys. Chem. C 122 (2018) 17456-17464.
DOI URL |
[20] |
T.D. Ha, J.W. Chen, M. Yen, Y.H. Lai, B.Y. Wang, Y.Y. Chin, W.B. Wu, H.J. Lin, J.Y. Juang, Y.H. Chu, ACS Appl. Mater. Interfaces 12 (2020) 46874.
DOI URL |
[21] |
J. Zhang, S. Zhu, W. Xia, J. Ming, F. Li, J. Fu, ACS Appl. Mater. Interfaces 11 (2019) 28442.
DOI URL |
[22] | V. Masheva, M. Grigorova, N. Valkov, H.J. Blythe, T. Midlarz, V. Blashov, J. Ge-shev, M. Mikhov, J. Magn. Magn. Mater. 196- 197 (1999) 128-130. |
[23] |
S. Koutani, G. Gavoille. J. Magn. Magn. Mater. 152 (1996) 54-60.
DOI URL |
[24] |
M. Fecioru-Morariu, S.R. Ali, C. Papusoi, M. Sperlich, G. Güntherodt, Phys. Rev. Lett. 99 (2007) 097206.
DOI URL |
[25] |
J. Hong, T. Leo, D.J. Smith, A.E. Berkowitz, Phys. Rev. Lett. 96 (2006) 117204.
DOI URL |
[26] | R. Li, L. Yu, Y. Hu, Phys. Status Solidi RRL 13 (2019) 190 0 039. |
[27] |
L. Balcells, B. Martinez, O. Iglesias, J.M. García-Martín, A. Cebollada, A. García-Martín, G. Armelles, B. Sepúlveda, Y. Alaverdyan, Appl. Phys. Lett. 94 (2009) 062502.
DOI URL |
[28] |
Y. Hu, A. Du, Eur. Phys. J. B 78 (2010) 373-379.
DOI URL |
[29] | S. Chikazumi, Physics of Ferromagnetism, Oxford University Press, New York, 1997. |
[30] |
X. Chi, R. Li, L. Yu, H. Kou, A. Du, Y. Liu, Y. Hu, Nanotechnology 30 (2019) 125702.
DOI URL |
[31] |
J.C. Slonczewski. J. Appl. Phys. 32 (1961) S253-S263.
DOI URL |
[32] |
J. d’Albuquerquee Castro, D. Altbir, J.C. Retamal, P. Vargas, Phys. Rev. Lett. 88 (2002) 237202.
DOI URL |
[33] |
M. Charilaou, F. Hellman. J. Appl. Phys. 117 (2015) 083907.
DOI URL |
[34] |
F. Torres, R. Morales, I.K. Schuller, M. Kiwi, Nanoscale 9 (2017) 17074.
DOI URL |
[35] | C. Zhang, Y. Xie, Q. Zhan, Y. Hu, Phys. Rev. B 103 (2021) 014 4 45. |
[36] |
F. Hellman, A. Hoffmann, Y. Tserkovnyak, G.S.D. Beach, E.E. Fullerton, C. Leighton, A.H. MacDonald, D.C. Ralph, D.A. Arena, H.A. Dürr, P. Fischer, J. Grollier, J.P. Heremans, T. Jungwirth, A.V. Kimel, B. Koopmans, I.N. Krivo-rotov, S.J. May, A.K. Petford-Long, J.M. Rondinelli, N. Samarth, I.K. Schuller, A.N. Slavin, M.D. Stiles, O. Tchernyshyov, A. Thiaville, B.L. Zink, Rev. Mod. Phys. 89 (2017) 025006.
DOI URL |
[37] |
L. Yu, R. Li, Y. Hu, Phys. Chem. Chem. Phys. 22 (2020) 9749-9758.
DOI URL |
[38] |
Y. Hu, A. Du. J. Appl. Phys. 102 (2007) 113911.
DOI URL |
[39] |
Y. Hu, F. Shi, G.Z. Wu, N. Jia, Y. Liu, A. Du. J. Phys. Soc. Jpn. 82 (2013) 064602.
DOI URL |
[40] |
A.K. Nandy, N.S. Kiselev, S. Blügel, Phys. Rev. Lett. 116 (2016) 177202.
DOI URL |
[41] |
W.H. Meiklejohn. J. Appl. Phys. 33 (1962) 1328-1335.
DOI URL |
[42] |
R.L. Stamps, J. Phys. D: Appl. Phys. 33(2000) R247-R268.
DOI URL |
[43] |
P.J. vander Zaag, Y. Ijiri, J.A. Borchers, L.F. Feiner, R.M. Wolf, J.M. Gaines, R.W. Erwin, M.A. Verheijen, Phys. Rev. Lett. 84(2000) 6102-6105.
DOI URL |
[44] |
P. Vargas, D. Altbir, J. d’Albuquerque e Castro, Phys. Rev. B 73 (2006) 092417.
DOI URL |
[45] |
G. Margaris, M. Vasilakaki, D. Peddis, K.N. Trohidou, S. Laureti, C. Binns, E. Agostinelli, D. Rinaldi, R. Mathieu, D. Fiorani, Nanotechnology 28 (2017) 035701.
DOI URL |
[46] |
M. Vasilakaki, G. Margaris, D. Peddis, R. Mathieu, N. Yaacoub, D. Fiorani, K. Tro-hidou, Phys. Rev. B 97 (2018) 094413.
DOI URL |
[47] |
M. Charilaou, F. Hellman. J. Appl. Phys. 117 (2015) 083907.
DOI URL |
[48] | D.P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, Cambridge University Press, Cambridge, 2005. |
[49] |
M. Deserno, C. Holm. J. Chem. Phys. 109 (1998) 7678-7693.
DOI URL |
[50] |
Y. Hu, Q. Lu, X. Chi, Z. Zhang, T. Hu, R. Li, L. Yu, A. Du, Nanotechnology 30 (2019) 325701.
DOI URL |
[51] |
T. Hu, X. Chi, Q. Lu, L. Yu, R. Li, Y. Liu, A. Du, Z. Li, F. Shi, Y. Hu. J. Alloy. Compd. 801 (2019) 465-472.
DOI URL |
[52] |
H.F. Du, A. Du. J. Appl. Phys. 99 (2006) 104306.
DOI URL |
[53] |
X. Chi, W. Rui, J. Du, S. Zhou, A. Du, Y. Hu, Appl. Phys. Lett. 108 (2016) 172401.
DOI URL |
[54] | E.C. Stoner, E.P. Wohlfarth, Philos. Trans. R. Soc. London, Ser. A 240 (1948) 599-642. |
[55] |
Y. Hu, G.Z. Wu, Y. Liu, A. Du. J. Magn. Magn. Mater. 324 (2012) 3204-3208.
DOI URL |
[56] | M. Vasilakaki, K.N. Trohidou, Phys. Rev. B 79 (2009) 14 4 402. |
[57] |
Y. Tang, Y. Sun, Z. Cheng. J. Appl. Phys. 100 (2006) 023914.
DOI URL |
[58] |
S. Guo, X.H. Liu, W.B. Cui, W. Liu, X.G. Zhao, D. Li, Z.D. Zhang. J. Appl. Phys. 105 (2009) 064702.
DOI URL |
[59] |
I.L. Guhr, O. Hellwig, C. Brombacher, M. Albrecht, Phys. Rev. B 76 (2007) 064434.
DOI URL |
[60] |
J. Keller, P. Miltényi, B. Beschoten, G. Güntherodt, U. Nowak, K.D. Usadel, Phys. Rev. B 66 (2002) 014431.
DOI URL |
[61] |
J. Nogués, D. Legerman, T.J. Moran, I.K. Schuller, Phys. Rev. Lett. 76 (1996) 4624-4627.
PMID |
[62] |
C. Leighton, J. Nogués, B.J. Jönsson-˚Akerman, I.K. Schuller, Phys. Rev. Lett. 84(20 0 0) 3466-3469.
DOI URL |
[63] |
K.D. Usadel, U. Nowak, Phys. Rev. B 80 (2009) 014418.
DOI URL |
[64] |
W.B. Rui, Y. Hu, A. Du, B. You, M.W. Xiao, W. Zhang, S.M. Zhou, J. Du, Sci. Rep. 5 (2015) 13640.
DOI PMID |
[65] |
A.E. Berkowitz, J.I. Hong, S.K. McCall, E. Shipton, K.T. Chan, T. Leo, D.L. Smith, Phys. Rev. B 81 (2010) 134404.
DOI URL |
[66] |
H. Ohldag, A. Scholl, F. Notting, E. Arenholz, S. Maat, A.T. Young, M. Carey, J. Stöhr, Phys. Rev. Lett. 91 (2003) 017203.
DOI URL |
[67] |
E. Jiménez, J. Camarero, J. Sort, J. Nogués, N. Mikuszeit, J.M. García-Martín, A. Hoffmann, B. Dieny, R. Miranda, Phys. Rev. B 80 (2009) 014415.
DOI URL |
[68] |
J.Krishna Murthy, A. Venimadhav, Appl. Phys. Lett. 103 (2013) 252410.
DOI URL |
[69] |
R.C. Sahoo, D. Paladhi, P. Dasgupta, A. Poddar, R. Singh, A. Das, T.K. Nath. J. Magn. Magn. Mater. 428 (2017) 86-91.
DOI URL |
[1] | Xiaodan Chi, Yong Hu. Role of competing interactions on dynamic relaxation and exchange bias in spin-glass/ferromagnet bilayer [J]. J. Mater. Sci. Technol., 2020, 51(0): 63-69. |
[2] | Liu Qing, junLi He, Zhang Yulei, Zhao Zhigang. Pattern recognition of messily grown nanowire morphologies applying multi-layer connected self-organized feature maps [J]. J. Mater. Sci. Technol., 2019, 35(5): 946-956. |
[3] | Mukhopadhyay T.,Mahata A.,Dey S.,Adhikari S.. Probabilistic Analysis and Design of HCP Nanowires: An Efficient Surrogate Based Molecular Dynamics Simulation Approach [J]. J. Mater. Sci. Technol., 2016, 32(12): 1345-1351. |
[4] | Dong CHEN, Yongping LEI, Xiaoyan LI, Yaowu SHI, Zhiling TIAN. Three Dimension Monte Carlo Simulation of Austenite Grain Growth in CGHAZ of an Ultrafine Grain Steel [J]. J Mater Sci Technol, 2003, 19(04): 309-312. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||