J. Mater. Sci. Technol. ›› 2022, Vol. 118: 136-143.DOI: 10.1016/j.jmst.2021.12.022
• Research Article • Previous Articles Next Articles
Xiang Penga,b, Yujiao Yana, Shijian Xionga, Yaping Miaoc, Jing Wena, Zhitian Liua,*(), Biao Gaob,d,**(
), Liangsheng Hue, Paul K. Chub,*(
)
Received:
2021-09-15
Revised:
2021-12-03
Accepted:
2021-12-06
Published:
2022-08-10
Online:
2022-02-25
Contact:
Zhitian Liu,Biao Gao,Paul K. Chu
About author:
** Hubei Key Laboratory of Plasma Chemistry and Ad- vanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, China. E-mail addresses: gaobiao@wust.edu.cn (B. Gao),Xiang Peng, Yujiao Yan, Shijian Xiong, Yaping Miao, Jing Wen, Zhitian Liu, Biao Gao, Liangsheng Hu, Paul K. Chu. Se-NiSe2 hybrid nanosheet arrays with self-regulated elemental Se for efficient alkaline water splitting[J]. J. Mater. Sci. Technol., 2022, 118: 136-143.
Scheme 1. Schematic illustration of the preparation of the Se-NiSe2 hybrid nanosheet electrocatalyst and application as a bifunctional water splitting electrocatalyst.
Fig. 1. SEM images: (a) Ni-OH/CC and (b) NiSe2/CC-180 with the insets showing the corresponding high-resolution images; (c) XRD patterns (* representing orthorhombic NiSe2, JCPDS No. 18-0886) and (d) selected patterns from the dotted rectangular box in (c) of NiSe2/CC selenized at different temperatures.
Fig. 3. High-resolution XPS spectra of Se 3d: (a) NiSe2/CC-140, (b) NiSe2/CC-160, (c) NiSe2/CC-180, (d) NiSe2/CC-200. I-Se represents the ionic selenium in NiSe2 and E-Se represents elemental selenium adsorbed on the composite electrocatalysts. (e) Calculated ratios of I-Se/E-Se for the different samples.
Fig. 4. Electrochemical characteristics: (a) polarization curves, (b) Tafel slopes, (c) double-layer capacitance (Cdl) plots, (d) Nyquist plots and corresponding circuit model; (e) Stability of the NiSe2/CC-180 electrocatalyst in HER with the inset showing the polarization curves before and after cycling; (f) Comparison of the HER characteristics of recently reported electrocatalysts in 1 mol L-1 KOH.
Fig. 5. Calculated charge density distributions: (a) pristine NiSe2 and (b) NiSe2-Se (2:1); (c) Gibbs free energy diagram for alkaline HER on the Se sites of NiSe2 for different I-Se/E-Se ratios (* representing the clean surface).
Fig. 6. Optimized surface atom distributions of the electrocatalysts with different I-Se/E-Se ratios: (a) clean NiSe2, (b) NiSe2-Se (4:1), (c) NiSe2-Se (2:1), (d) NiSe2-Se (1:1) [Red: adsorbed E-Se, brown: I-Se in NiSe2, grey: Ni in NiSe2]. (e) Electrocatalytic mechanism of NiSe2 with different I-Se/E-Se ratios in alkaline HER.
Fig. 7. OER performance of the electrocatalysts in 1 mol L-1 KOH aqueous solution: (a) polarization curves, (b) Tafel slopes, (c) Nyquist plots and corresponding circuit of the electrocatalysts, (d) stability of the NiSe2/CC-180 electrocatalyst in OER with inset showing the polarization curves before and after cycling.
Fig. 8. (a) Overall water splitting characteristics of the device with NiSe2/CC-180 as both the anode and cathode; (b) Comparison of the voltage required to generate a current density of 10 mA cm-2 in overall water splitting with those of recently reported non-precious transition metal electrocatalyst couples: (1) NiSe2/CC-180 in this work, (2) FeSe2/NF [39], (3) Ultra-thin non-layered NiSe [40], (4) Ni0.5Se-OER//Ni0.75Se-HER [41], (5) NiSe/NF [29], (6) Co7Se8 nanostructures [42], (7) Ni3Se2/NiSe [43], (8) 3D Se-(NiCo)Sx/(OH)x nanosheets [44], (9) Ni-Co-P hollow nanobricks [45], (10) Co(OH)2@NCNTs@NF [46]; (c) Photo of the water splitting system powered by an AA battery.
[1] |
I. Roger, M.A. Shipman, M.D. Symes, Nat. Rev. Chem. 1 (2017) 0003.
DOI URL |
[2] |
V.R. Stamenkovic, D. Strmcnik, P.P. Lopes, N.M. Markovic, Nat. Mater. 16 (2017) 57-69.
DOI URL |
[3] |
X. Zou, Y. Zhang, Chem. Soc. Rev. 44 (2015) 5148-5180.
DOI URL |
[4] |
X. Peng, L. Wang, L. Hu, Y. Li, B. Gao, H. Song, C. Huang, X. Zhang, J. Fu, K. Huo, P.K. Chu, Nano Energy 34 (2017) 1-7.
DOI URL |
[5] |
X. Peng, C. Pi, X. Zhang, S. Li, K. Huo, P.K. Chu, Sustain. Energy Fuels 3 (2019) 366-381.
DOI URL |
[6] |
R. Hao, Q.L. Feng, X.J. Wang, Y.C. Zhang, K.S. Li, Rare Met. 41 (2022) 1314-1322.
DOI URL |
[7] |
X. Peng, X. Jin, B. Gao, Z. Liu, P.K. Chu, J. Catal. 398 (2021) 54-66.
DOI URL |
[8] |
X.J. Fang, L.P. Ren, F. Li, Z.X. Jiang, Z.G. Wang, Rare Met. 41 (2022) 901-910.
DOI URL |
[9] | K. Jiang, B. Liu, M. Luo, S. Ning, M. Peng, Y. Zhao, Y.R. Lu, T.S. Chan, F.M.F. de Groot, Y. Tan, Nat.Commun. 10 (2019) 1743. |
[10] |
X. Peng, A.M. Qasim, W. Jin, L. Wang, L. Hu, Y. Miao, W. Li, Y. Li, Z. Liu, K. Huo, K.Y. Wong, P.K. Chu, Nano Energy 53 (2018) 66-73.
DOI URL |
[11] |
X. Peng, L. Hu, L. Wang, X. Zhang, J. Fu, K. Huo, L.Y.S. Lee, K.Y. Wong, P.K. Chu, Nano Energy 26 (2016) 603-609.
DOI URL |
[12] |
X. Peng, X. Jin, N. Liu, P. Wang, Z. Liu, B. Gao, L. Hu, P.K. Chu, Appl. Surf. Sci. 567 (2021) 150779.
DOI URL |
[13] |
S. Han, Y.C. Pu, L. Zheng, L. Hu, J.Z. Zhang, X. Fang, J. Mater. Chem. A 4 (2016) 1078-1086.
DOI URL |
[14] |
X.X. Li, P.Y. Zhu, Q. Li, Y.X. Xu, Y. Zhao, H. Pang, Rare Met. 39 (2020) 680-687.
DOI URL |
[15] |
W.L. Ding, Y.H. Cao, H. Liu, A.X. Wang, C.J. Zhang, X.R. Zheng, Rare Met. 40 (2021) 1373-1382.
DOI URL |
[16] |
Y. Huang, J. Ren, X. Qu, Chem. Rev. 119 (2019) 4357-4412.
DOI URL |
[17] |
X. Peng, Y. Yan, X. Jin, C. Huang, W. Jin, B. Gao, P.K. Chu, Nano Energy 78 (2020) 105234.
DOI URL |
[18] |
Y. Sun, K. Xu, Z. Wei, H. Li, T. Zhang, X. Li, W. Cai, J. Ma, H.J. Fan, Y. Li, Adv. Mater. 30 (2018) 1802121.
DOI URL |
[19] |
J. Liang, Y. Yang, J. Zhang, J. Wu, P. Dong, J. Yuan, G. Zhang, J. Lou, Nanoscale 7 (2015) 14813-14816.
DOI PMID |
[20] |
F. Wang, Y. Li, T.A. Shifa, K. Liu, F. Wang, Z. Wang, P. Xu, Q. Wang, J. He, Angew. Chem. Int. Ed. 55 (2016) 6919-6924.
DOI URL |
[21] |
H. Zhou, F. Yu, Y. Liu, J. Sun, Z. Zhu, R. He, J. Bao, W.A. Goddard, S. Chen, Z. Ren, Energy Environ. Sci. 10 (2017) 1487-1492.
DOI URL |
[22] |
W. Zhao, C. Zhang, F. Geng, S. Zhuo, B. Zhang, ACS Nano 8 (2014) 10909-10919.
DOI URL |
[23] |
X.H. Xia, J.P. Tu, J. Zhang, X.L. Wang, W.K. Zhang, H. Huang, Sol. Energy Mater. Sol. Cells 92 (2008) 628-633.
DOI URL |
[24] |
R. Liu, X. Peng, X. Han, C.H. Mak, K.C. Cheng, S.P. Santoso, H.H. Shen, Q. Ruan, F. Cao, T.Y. Edward, J. Electroanal. Chem. 887 (2021) 115167.
DOI URL |
[25] |
J. Zhou, Y. Liu, Z. Zhang, Z. Huang, X. Chen, X. Ren, L. Ren, X. Qi, J. Zhong, Electrochim. Acta 279 (2018) 195-203.
DOI URL |
[26] |
L. Liu, Q. Peng, Y. Li, Nano Res. 1 (2008) 403-411.
DOI URL |
[27] |
C. Zhang, H. Tao, Y. Dai, X. He, K. Zhang, Prog. Nat. Sci. 24 (2014) 671-675.
DOI URL |
[28] |
D. Das, S. Santra, K.K. Nanda, ACS Appl. Mater. Interfaces 10 (2018) 35025-35038.
DOI URL |
[29] |
C. Tang, N. Cheng, Z. Pu, W. Xing, X. Sun, Angew. Chem. Int. Ed. 54 (2015) 9351-9355.
DOI URL |
[30] |
T.W. Lin, C.J. Liu, C.S. Dai, Appl. Catal. B Environ. 154-155 (2014) 213-220.
DOI URL |
[31] |
X. Shi, X. Ling, L. Li, C. Zhong, Y. Deng, X. Han, W. Hu, J. Mater. Chem. A 7 (2019) 23787-23793.
DOI URL |
[32] |
G.W. Tang, Q. Qian, K.L. Peng, X. Wen, G.X. Zhou, M. Sun, X.D. Chen, Z.M. Yang, AIP Adv. 5 (2015) 027113.
DOI URL |
[33] |
J. Si, H. Chen, C. Lei, Y. Suo, B. Yang, Z. Zhang, Z. Li, L. Lei, J. Chen, Y. Hou, Nanoscale 11 (2019) 16200-16207.
DOI URL |
[34] |
X. Zhang, H. Xu, X. Li, Y. Li, T. Yang, Y. Liang, ACS Catal. 6 (2016) 580-588.
DOI URL |
[35] | H. Zhang, X. Wu, C. Chen, C. Lv, H. Liu, Y. Lv, J. Guo, J. Li, D. Jia, F. Tong, Chem. Eng. J. (2020) 128069. |
[36] |
C. Huang, X. Miao, C. Pi, B. Gao, X. Zhang, P. Qin, K. Huo, X. Peng, P.K. Chu, Nano Energy 60 (2019) 520-526.
DOI |
[37] |
J. Zhang, Y. Wang, C. Zhang, H. Gao, L. Lv, L. Han, Z. Zhang, ACS Sustain. Chem. Eng. 6 (2018) 2231-2239.
DOI URL |
[38] |
P. Wang, Z. Pu, W. Li, J. Zhu, C. Zhang, Y. Zhao, S. Mu, J. Catal. 377 (2019) 600-608.
DOI URL |
[39] |
C. Panda, P.W. Menezes, C. Walter, S. Yao, M.E. Miehlich, V. Gutkin, K. Meyer, M. Driess, Angew. Chem. Int. Ed. 56 (2017) 10506-10510.
DOI URL |
[40] |
H. Wu, X. Lu, G. Zheng, G.W. Ho, Adv. Energy Mater. 8 (2018) 1702704.
DOI URL |
[41] |
X. Zheng, X. Han, H. Liu, J. Chen, D. Fu, J. Wang, C. Zhong, Y. Deng, W. Hu, ACS Appl. Mater. Interfaces 10 (2018) 13675-13684.
DOI URL |
[42] |
J. Masud, A.T. Swesi, W.P. Liyanage, M. Nath, ACS Appl. Mater. Interfaces 8 (2016) 17292-17302.
DOI URL |
[43] |
Y. Zhong, B. Chang, Y. Shao, C. Xu, Y. Wu, X. Hao, ChemSusChem 12 (2019) 2008-2014.
DOI URL |
[44] |
C. Hu, L. Zhang, Z.J. Zhao, A. Li, X. Chang, J. Gong, Adv. Mater. 30 (2018) 1705538.
DOI URL |
[45] |
Y. Chen, S. Ji, C. Chen, Q. Peng, D. Wang, Y. Li, Joule 2 (2018) 1242-1264.
DOI URL |
[46] |
P. Guo, J. Wu, X.B. Li, J. Luo, W.M. Lau, H. Liu, X.L. Sun, L.M. Liu, Nano Energy 47 (2018) 96-104.
DOI URL |
[1] | Lei Chen, Yunpeng Wang, Xin Zhao, Yuchao Wang, Qian Li, Qichen Wang, Yougen Tang, Yongpeng Lei. Trimetallic oxyhydroxides as active sites for large-current-density alkaline oxygen evolution and overall water splitting [J]. J. Mater. Sci. Technol., 2022, 110(0): 128-135. |
[2] | Hae Jin Park, Hee Jin Lee, Tae Kyung Kim, Sung Hwan Hong, Wei-Min Wang, Taek Jib Choi, Ki Buem Kim. Formation of photo-reactive heterostructure from a multicomponent amorphous alloy with atomically random distribution [J]. J. Mater. Sci. Technol., 2022, 109(0): 245-253. |
[3] | Shuo Li, Jinyan Xiong, Xueteng Zhu, Weijie Li, Rong Chen, Gang Cheng. Recent advances in synthesis strategies and solar-to-hydrogen evolution of 1T phase MS2 (M = W, Mo) co-catalysts [J]. J. Mater. Sci. Technol., 2022, 101(0): 242-263. |
[4] | Xiaolin Hu, Tongxin Yang, Zuguang Yang, Zongyang Li, Ronghua Wang, Meng Li, Guangsheng Huang, Bin Jiang, Chaohe Xu, Fusheng Pan. Engineering of Co3O4@Ni2P heterostructure as trifunctional electrocatalysts for rechargeable zinc-air battery and self-powered overall water splitting [J]. J. Mater. Sci. Technol., 2022, 115(0): 19-28. |
[5] | Kena Wu, Xiaonan Wei, Deng Li, Peng Hu. Nitrogen incorporated nickel molybdenum sulfide as efficient electrocatalyst for overall water splitting [J]. J. Mater. Sci. Technol., 2022, 99(0): 270-276. |
[6] | Xinqiang Wang, Bin Wang, Yuanfu Chen, Mengya Wang, Qi Wu, Katam Srinivas, Bo Yu, Xiaojuan Zhang, Fei Ma, Wanli Zhang. Fe2P nanoparticles embedded on Ni2P nanosheets as highly efficient and stable bifunctional electrocatalysts for water splitting [J]. J. Mater. Sci. Technol., 2022, 105(0): 266-273. |
[7] | Bin Wang, Yuanfu Chen, Qi Wu, Yingjiong Lu, Xiaojuan Zhang, Xinqiang Wang, Bo Yu, DongXu Yang, Wanli Zhang. A co-coordination strategy to realize janus-type bimetallic phosphide as highly efficient and durable bifunctional catalyst for water splitting [J]. J. Mater. Sci. Technol., 2021, 74(0): 11-20. |
[8] | Yuanmei Xu, Xiaoqin Zhang, Zhihong Chen, Krzysztof Kempa, Xin Wang, Lingling Shui. Chemical vapor deposition of amorphous molybdenum sulphide on black phosphorus for photoelectrochemical water splitting [J]. J. Mater. Sci. Technol., 2021, 68(0): 1-7. |
[9] | Hongyan Wang, Ran Wei, Xiumin Li, Xuli Ma, Xiaogang Hao, Guoqing Guan. Nanostructured amorphous Fe29Co27Ni23Si9B12 high-entropy-alloy: an efficient electrocatalyst for oxygen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 68(0): 191-198. |
[10] | Yao Pang, Wence Xu, Shengli Zhu, Zhenduo Cui, Yanqin Liang, Zhaoyang Li, Shuilin Wu, Chuntao Chang, Shuiyuan Luo. Self-supporting amorphous nanoporous NiFeCoP electrocatalyst for efficient overall water splitting [J]. J. Mater. Sci. Technol., 2021, 82(0): 96-104. |
[11] | Zheng Zhang, Yuyang Kang, Li-Chang Yin, Ping Niu, Chao Zhen, Runze Chen, Xiangdong Kang, Fayu Wu, Gang Liu. Constructing CdSe QDs modified porous g-C3N4 heterostructures for visible light photocatalytic hydrogen production [J]. J. Mater. Sci. Technol., 2021, 95(0): 167-171. |
[12] | Yuxi Ren, Shengli Zhu, Yanqin Liang, Zhaoyang Li, Shuilin Wu, Chuntao Chang, Shuiyuan Luo, Zhenduo Cui. Hierarchical Ni3S4@MoS2 nanocomposites as efficient electrocatalysts for hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 95(0): 70-77. |
[13] | Gaoqi Tian, Songrui Wei, Zhangtao Guo, Shiwei Wu, Zhongli Chen, Fuming Xu, Yang Cao, Zheng Liu, Jieqiong Wang, Lei Ding, Jinchun Tu, Hao Zeng. Hierarchical NiMoP2-Ni2P with amorphous interface as superior bifunctional electrocatalysts for overall water splitting [J]. J. Mater. Sci. Technol., 2021, 77(0): 108-116. |
[14] | Zeming Gu, Qi Wang, Xiaoqin Sun, Lingwei Lu, Yuwei Zhang, Ran Wang, Shu Jin, Yinlin Shao, Jun Qian, Xiaoxiang Xu. SrTiO3-CaCr0.5Nb0.5O3 solid solutions as p-type photocatalysts for Z-scheme water splitting under visible light illumination [J]. J. Mater. Sci. Technol., 2021, 87(0): 46-53. |
[15] | Chaoyi Yan, Jianwen Huang, Chunyang Wu, Yaoyao Li, Yuchuan Tan, Luying Zhang, Yinghui Sun, Xiaona Huang, Jie Xiong. In-situ formed NiS/Ni coupled interface for efficient oxygen evolution and hydrogen evolution [J]. J. Mater. Sci. Technol., 2020, 42(0): 10-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||