J. Mater. Sci. Technol. ›› 2022, Vol. 118: 144-157.DOI: 10.1016/j.jmst.2021.11.060
• Research Article • Previous Articles Next Articles
Keqiang Zhanga,b, Qiaoyu Menga,b, Xueqin Zhanga,b, Zhaoliang Qua,b, Rujie Hea,b,*()
Received:
2021-07-19
Revised:
2021-11-17
Accepted:
2021-11-24
Published:
2022-08-10
Online:
2022-02-25
Contact:
Rujie He
About author:
* Institute of Advanced Structure Technology, Beijing In-stitute of Technology, Beijing 100081, China. E-mail address: herujie@bit.edu.cn (R. He).Keqiang Zhang, Qiaoyu Meng, Xueqin Zhang, Zhaoliang Qu, Rujie He. Quantitative characterization of defects in stereolithographic additive manufactured ceramic using X-ray computed tomography[J]. J. Mater. Sci. Technol., 2022, 118: 144-157.
Scanner parameter settings | Acceleration voltage (kV) | Target powder (W) | Exposure time (s) | Number of projectors | Voxel size (μm3) |
---|---|---|---|---|---|
Value | 60 | 5 | 1 | 2401 | 2.4 × 2.4 × 2.4 |
Table 1. X-CT scanner parameter settings.
Scanner parameter settings | Acceleration voltage (kV) | Target powder (W) | Exposure time (s) | Number of projectors | Voxel size (μm3) |
---|---|---|---|---|---|
Value | 60 | 5 | 1 | 2401 | 2.4 × 2.4 × 2.4 |
Fig. 4. Exemplar X-CT images of Al2O3 green cylinders with artifacts and noise: (a1) A45, (b1) A50, (c1) A55, (d1) A60, (e1) A65. High contrast voids and noisy voxels are segmented: (a2) A45, (b2) A50, (c2) A55, (d2) A60, (e2) A65.
Fig. 6. Exemplar X-CT images of Al2O3 sintered cylinders with cupping artifacts and noise obscuring small voids: (a1) A45, (b1) A50, (c1) A55, (d1) A60, (e1) A65. High contrast voids and noisy voxels are segmented: (a2) A45, (b2) A50, (c2) A55, (d2) A60, (e2) A65.
Fig. 10. 3D X-CT reconstructions showing defect distributions in Al2O3 sintered cylinders: (a) A45; (b) A50; (c) A55; (d) A60; (e) A65 (surface colors represent the defects volume).
Defect types | Features | Causes | ||
---|---|---|---|---|
Green body | Sintered body | Green body | Sintered body | |
Pores | Entrapped gas, voids | Entrapped gas | Incomplete degassing, high viscosity | Insufficient energy, volatilization of organic matter |
Delaminations (or poor inter-layer bonding) | Not found | Improper bonding between successive tracks or layers | Not found | Residual stresses, over-cured |
Surface roughness | Layer-by-layer microstructure, ridge-like, staircase | Layer-by-layer microstructure on surface, ridge-like, staircase | Layer by layer deposition, light scattering, orientation of the surface, etc. | Layer by layer manufacturing strategy, volatilization of organic matter, orientation of the surface, etc. |
Table 2. Summary of major defect types observed in both SL additive manufactured Al2O3 green and sintered bodies.
Defect types | Features | Causes | ||
---|---|---|---|---|
Green body | Sintered body | Green body | Sintered body | |
Pores | Entrapped gas, voids | Entrapped gas | Incomplete degassing, high viscosity | Insufficient energy, volatilization of organic matter |
Delaminations (or poor inter-layer bonding) | Not found | Improper bonding between successive tracks or layers | Not found | Residual stresses, over-cured |
Surface roughness | Layer-by-layer microstructure, ridge-like, staircase | Layer-by-layer microstructure on surface, ridge-like, staircase | Layer by layer deposition, light scattering, orientation of the surface, etc. | Layer by layer manufacturing strategy, volatilization of organic matter, orientation of the surface, etc. |
Fig. 11. (a) Pore volume rate of Al2O3 green cylinders vs. solid loading. Pore size distributions of Al2O3 green cylinders: (b) A45, (c) A50, (d) A55, (e) A60, (f) A65.
Fig. 13. Pore size vs. calculated sphericity coefficient of pores in Al2O3 green bodies: (a) A45, (b) A50, (c) A55, (d) A60, (e) A65 (Zooms showing typical 3D visualization of pore shape).
Fig. 14. (a1, a2) Defect volume rate of Al2O3 sintered cylinders. Pore size distributions of Al2O3 sintered cylinders: (b1) A45; (b2) A50; (b3) A55. Delamination size distributions of Al2O3 sintered cylinders: (c1) A45; (c2) A50; (c3) A55.
Solid loading (vol.%) | Number | |||
---|---|---|---|---|
103-104 (μm3) | 104-105 (μm3) | |||
Green body | Sintered body | Green body | Sintered body | |
45 | 84 | 662 | 0 | 21 |
50 | 49 | 88 | 0 | 9 |
55 | 24 | 5742 | 6 | 4 |
Table 3. Statistical data from quantification of pores detected in Al2O3 green and sintered bodies.
Solid loading (vol.%) | Number | |||
---|---|---|---|---|
103-104 (μm3) | 104-105 (μm3) | |||
Green body | Sintered body | Green body | Sintered body | |
45 | 84 | 662 | 0 | 21 |
50 | 49 | 88 | 0 | 9 |
55 | 24 | 5742 | 6 | 4 |
Fig. 19. X-CT reconstructions showing delaminations and typical 3D visualization of delamination shapes in Al2O3 sintered cylinders: (a) A45; (b) A50; (c) A55.
[1] |
Z. Eckel, C. Zhou, J. Martin, A. Jacobsen, W. Carter, T. Schaedler, Science 351 (2016) 58-62.
DOI PMID |
[2] |
G. Liu, X. Zhang, X. Chen, Y. He, L. Cheng, M. Huo, J. Yin, F. Hao, S. Chen, P. Wang, S. Yi, L. Wan, Z. Mao, Z. Chen, X. Wang, Z. Cao, J. Lv, Mater. Sci. Eng. R 145 (2021) 100596.
DOI URL |
[3] |
Y. Lakhdar, C. Tuck, J. Binner, A. Terry, R. Goodridge, Prog. Mater. Sci. 116 (2021) 100736.
DOI URL |
[4] |
Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, L. He, J. Eur. Ceram. Soc. 39 (2019) 661-687.
DOI URL |
[5] |
S. Mamatha, P. Biswas, P. Ramavath, D. Das, R. Johnson, Ceram. Int. 44 (2018) 19278-19281.
DOI URL |
[6] |
S. Zhao, G. Siqueira, S. Drdova, D. Norris, C. Ubert, A. Bonnin, S. Galmarini, M. Ganobjak, Z. Pan, S. Brunner, G. Nyström, J. Wang, M.M. Koebel, W.J. Malfait, Nature 584 (2020) 387-392.
DOI URL |
[7] |
S. Tang, L. Yang, X. Liu, G. Li, W. Jiang, Z. Fan, J. Eur. Ceram. Soc. 40 (2020) 5758-5766.
DOI URL |
[8] |
J. Deckers, S. Meyers, J.P. Krutha, J. Vleugels, Phys. Procedia 56 (2014) 117-124.
DOI URL |
[9] |
J. Wu, M. Li, S. Liu, Y. Shi, C. Li, W. Wang, Ceram. Int. 46 (2020) 26888-26894.
DOI URL |
[10] |
C. Feng, K. Zhang, R. He, G. Ding, M. Xia, X. Jin, C. Xie, J. Adv. Ceram. 9 (2020) 360-373.
DOI URL |
[11] |
J. Schmidt, A.A. Altun, M. Schwentenwein, P. Colombo, J. Eur. Ceram. Soc. 39 (2019) 1336-1343.
DOI URL |
[12] |
K. Zhang, C. Xie, G. Wang, R. He, G. Ding, M. Wang, D. Dai, D. Fang, Ceram. Int. 45 (2019) 203-208.
DOI URL |
[13] |
L. Yang, X. Zeng, A. Ditta, B. Feng, L. Su, Y. Zhang, J. Adv. Ceram. 9 (2020) 312-319.
DOI URL |
[14] |
J. Deckers, J.P. Kruth, K. Shahzad, J. Vleugels, CIRP Ann. Manuf. Technol. 61 (2012) 211-214.
DOI URL |
[15] |
C. He, X. Liu, C. Ma, X. Li, F. Hou, L. Yan, A. Guo, J. Liu, J. Eur. Ceram. Soc. 41 (2021) 5570-5577.
DOI URL |
[16] | C. He, C. Ma, X. Li, F. Hou, L. Yan, A. Guo, J. Liu, Addit. Manuf. 46 (2021) 102111. |
[17] |
K. Zhang, K. Wei, J. Chen, B. Liang, D. Fang, R. He, J. Eur. Ceram. Soc. 41 (2021) 2796-2806.
DOI URL |
[18] |
G. Ding, R. He, K. Zhang, M. Xia, C. Feng, D. Fang, Ceram. Int. 46 (2020) 4720-4729.
DOI URL |
[19] |
X. Wu, Q. Lian, D. Li, X. He, J. Meng, X. Liu, Z. Jin, Ceram. Int. 45 (2019) 3687-3697.
DOI URL |
[20] |
E. Ferraris, J. Vleugels, Y. Guo, D. Bourell, J.P. Kruth, B. Lauwers, CIRP Ann. Manuf. Technol. 65 (2016) 761-784.
DOI URL |
[21] |
Y. Arai, R. Inoue, J. Adv. Ceram. 8 (2019) 438-447.
DOI URL |
[22] |
X. Jiao, J. Wang, C. Liu, Z. Guo, G. Tong, S. Ma, Y. Bi, Y. Zhang, S. Xiong, J. Mater. Sci. Technol. 35 (2019) 1099-1107.
DOI |
[23] |
Y. Li, X. Cheng, Z. Ma, X. Li, M. Wang, J. Mater. Sci. Technol. 93 (2021) 119-127.
DOI URL |
[24] |
K. Zhang, Q. Meng, N. Cai, Z. Qu, R. He, Ceram. Int. 47 (2021) 24353-24359.
DOI URL |
[25] |
M. Saâdaoui, F. Khaldoun, J. Adrien, H. Reveron, J. Chevalier, J. Eur. Ceram. Soc. 40 (2020) 3200-3207.
DOI URL |
[26] |
Z. Xing, W. Liu, Y. Chen, W. Li, Ceram. Int. 44 (2018) 19939-19944.
DOI URL |
[27] |
W. Liu, M. Li, J. Nie, C. Wang, W. Li, Z. Xing, J. Mater. Res. Technol. 9 (2020) 11476-11483.
DOI URL |
[28] |
K. Zhang, R. He, G. Ding, X. Bai, D. Fang, Ceram. Int. 47 (2021) 2303-2310.
DOI URL |
[29] |
K. Zhang, R. He, G. Ding, C. Feng, W. Song, D. Fang, Mater. Sci. Eng. A 774 (2020) 138768.
DOI URL |
[30] | J. Lifton, T. Liu, Addit. Manuf. 39 (2021) 101899. |
[31] | M. Nixon, A. Aguado, Feature Extraction & Image Processing for Computer Vi- sion, Academic Press Elsevier, UK, 2012. |
[32] |
M. Hesamian, W. Jia, X. He, P. Kennedy, J. Digit. Imaging 32 (2019) 582-596.
DOI URL |
[33] |
C. Chuang, D. Singh, P. Kenesei, J. Almer, J. Hryn, R. Huff, Scr. Mater. 106 (2015) 5-8.
DOI URL |
[34] | S. Diener, G. Franchin, N. Achilles, T. Kuhnt, F. Rösler, N. Katsikis, P. Colombo, Open Ceram 5 (2021) 100042. |
[35] |
J. Fan, Y. Li, Y. Gao, X. Zhang, P. Jiang, Ceram. Int. 47 (2021) 18084-18093.
DOI URL |
[36] |
G. Strano, L. Hao, R.M. Everson, K.E. Evans, J. Mater. Process. Technol. 213 (2013) 589-597.
DOI URL |
[37] |
N. Sanaei, A. Fatemi, Theor. Appl. Fract. Mech. 108 (2020) 102638.
DOI URL |
[38] | D. Munz, T. Fett, Ceramics: Mechanical Properties, Failure Behavior, and Mate- rials Selection, Springer Verlag, NewYork, 1999. |
[39] |
S. Ndinisaa, D. Whitefield, I. Sigalas, Ceram. Int. 46 (2020) 3177-3182.
DOI URL |
[40] | G. Ziółkowski, K. Gruber, E. Tokarczyk, R. Roszak, M. Ziegenhorn, Addit. Manuf. 45 (2021) 102070. |
[1] | Muzhi Ma, Zhu Xiao, Xiangpeng Meng, Zhou Li, Shen Gong, Jie Dai, Hongyun Jiang, Yanbin Jiang, Qian Lei, Haigen Wei. Effects of trace calcium and strontium on microstructure and properties of Cu-Cr alloys [J]. J. Mater. Sci. Technol., 2022, 112(0): 11-23. |
[2] | Wenjie Lu, Xian Luo, Dou Ning, Miao Wang, Chao Yang, Miaoquan Li, Yanqing Yang, Pengtao Li, Bin Huang. Excellent strength-ductility synergy properties of gradient nano-grained structural CrCoNi medium-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 112(0): 195-201. |
[3] | Chenhao Ren, Yao Huang, Wenkui Hao, Dawei Zhang, Xiejing Luo, Lingwei Ma, Jinke Wang, Thee Chowwanonthapunya, Chaofang Dong, Xiaogang Li. Multi-action self-healing coatings with simultaneous recovery of corrosion resistance and adhesion strength [J]. J. Mater. Sci. Technol., 2022, 101(0): 18-27. |
[4] | Longkang Cong, Wei Li, Jiancheng Wang, Shengyue Gu, Shouyang zhang. High-entropy (Y0.2Gd0.2Dy0.2Er0.2Yb0.2)2Hf2O7 ceramic: A promising thermal barrier coating material [J]. J. Mater. Sci. Technol., 2022, 101(0): 199-204. |
[5] | Fu-Zhi Dai, Yinjie Sun, Yixiao Ren, Huimin Xiang, Yanchun Zhou. Segregation of solute atoms in ZrC grain boundaries and their effects on grain boundary strengths [J]. J. Mater. Sci. Technol., 2022, 101(0): 234-241. |
[6] | Xinghong Zhang, Baihe Du, Ping Hu, Yuan Cheng, Jiecai Han. Thermal response, oxidation and ablation of ultra-high temperature ceramics, C/SiC, C/C, graphite and graphite-ceramics [J]. J. Mater. Sci. Technol., 2022, 102(0): 137-158. |
[7] | Z.W. Wang, J.F. Zhang, G.M. Xie, L.H. Wu, H. Zhang, P. Xue, D.R. Ni, B.L. Xiao, Z.Y. Ma. Evolution mechanisms of microstructure and mechanical properties in a friction stir welded ultrahigh-strength quenching and partitioning steel [J]. J. Mater. Sci. Technol., 2022, 102(0): 213-223. |
[8] | Dina Bayoumy, Kwangsik Kwak, Torben Boll, Stefan Dietrich, Daniel Schliephake, Jie Huang, Junlan Yi, Kazuki Takashima, Xinhua Wu, Yuman Zhu, Aijun Huang. Origin of non-uniform plasticity in a high-strength Al-Mn-Sc based alloy produced by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 103(0): 121-133. |
[9] | Gang Zhou, Yan Yang, Hanzhu Zhang, Faping Hu, Xueping Zhang, Chen Wen, Weidong Xie, Bin Jiang, Xiaodong Peng, Fusheng Pan. Microstructure and strengthening mechanism of hot-extruded ultralight Mg-Li-Al-Sn alloys with high strength [J]. J. Mater. Sci. Technol., 2022, 103(0): 186-196. |
[10] | Yan Xing, Wenqing Dan, Yicun Fan, Xing'ao Li. Low temperature synthesis of high-entropy (Y0.2Yb0.2Sm0.2Eu0.2Er0.2)2O3 nanofibers by a novel electrospinning method [J]. J. Mater. Sci. Technol., 2022, 103(0): 215-220. |
[11] | Zheng Cao, Zhao Cheng, Wei Xu, Lei Lu. Effect of work hardening discrepancy on strengthening of laminated Cu/CuZn alloys [J]. J. Mater. Sci. Technol., 2022, 103(0): 67-72. |
[12] | Kun Li, Luxin Liang, Peng Du, Zeyun Cai, Tao Xiang, Hiroyasu Kanetaka, Hong Wu, Guoqiang Xie. Mechanical properties and corrosion resistance of powder metallurgical Mg-Zn-Ca/Fe bulk metal glass composites for biomedical application [J]. J. Mater. Sci. Technol., 2022, 103(0): 73-83. |
[13] | Xudong Qi, Kai Li, Enwei Sun, Bingqian Song, Da Huo, Jiaming Li, Xianjie Wang, Rui Zhang, Bin Yang, Wenwu Cao. Large photovoltaic effect with ultrahigh open-circuit voltage in relaxor-based ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics [J]. J. Mater. Sci. Technol., 2022, 104(0): 119-126. |
[14] | Haolin Zhu, Ling Liu, Huimin Xiang, Fu-Zhi Dai, Xiaohui Wang, Zhuang Ma, Yanbo Liu, Yanchun Zhou. Improved thermal stability and infrared emissivity of high-entropy REMgAl11O19 and LaMAl11O19 (RE=La, Nd, Gd, Sm, Pr, Dy; M=Mg, Fe, Co, Ni, Zn) [J]. J. Mater. Sci. Technol., 2022, 104(0): 131-144. |
[15] | Qiaolei Li, Xiaolong An, Jingjing Liang, Yongsheng Liu, Kehui Hu, Zhigang Lu, Xinyan Yue, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Balancing flexural strength and porosity in DLP-3D printing Al2O3 cores for hollow turbine blades [J]. J. Mater. Sci. Technol., 2022, 104(0): 19-32. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||