J. Mater. Sci. Technol. ›› 2021, Vol. 76: 247-253.DOI: 10.1016/j.jmst.2020.11.023
• Research Article • Previous Articles
Jie Guoa,b, Xinguo Zhaoa,b,**(), Naikun Sunc,*(
), Xiaofei Xiaoa,b, Wei Liua,b, Zhidong Zhanga,b
Received:
2020-07-09
Revised:
2020-08-19
Accepted:
2020-09-04
Published:
2021-06-20
Online:
2020-11-07
Contact:
Xinguo Zhao,Naikun Sun
About author:
*naikunsun@163.com (N. Sun).Jie Guo, Xinguo Zhao, Naikun Sun, Xiaofei Xiao, Wei Liu, Zhidong Zhang. Tunable quantum Shubnikov-de Hass oscillations in antiferromagnetic topological semimetal Mn-doped Cd3As2[J]. J. Mater. Sci. Technol., 2021, 76: 247-253.
Fig. 1. (a-c) XRD patterns of (Cd1-xMnx)3As2 (x = 0, 0.1 and 0.20) compounds. The patterns were refined by Rietica software. Exp indicates the experimental data. Cal indicates the calculated pattern. Bragg indicates the positions of Bragg diffraction peaks. Diff indicates the differences between experimental data and the calculated data. (d) The lattice constant a and c for (Cd1-xMnx)3As2 as a function of x, and the inset shows the details of diffraction peaks from 39.6 to 40.8 degrees.
Fig. 2. Magnetic properties of (Cd1-xMnx)3As2 compounds. (a) Temperature dependence of the magnetization at 1 T of (Cd1-xMnx)3As2 (0 ≤ x ≤ 0.20). (b) Details of magnetization curves around antiferromagnetic Néel points. (c) Field dependence of the magnetization of (Cd1-xMnx)3As2 (0 ≤ x ≤ 0.10).
Fig. 3. SdH oscillations of (Cd1-xMnx)3As2 compounds. (a) Field dependent resistance of (Cd0.9Mn0.1)3As2. (The curves recorded at temperatures higher than 2 K are vertically shifted by a step of 0.02 Ω for clarity). (b)-(d) Temperature dependent SdH oscillation amplitude ΔRxx as a function of 1/B for the (Cd1-xMnx)3As2 (x = 0, 0.05, 0.10) compounds. (e) Fast Fourier transformation of SdH oscillation with a single frequency for (Cd1-xMnx)3As2 (x = 0, 0.01, 0.03, 0.05, 0.07 and 0.10). The curves measured at different temperature are marked by different colors, corresponding to the color bar.
Fig. 4. Relevant parameters acquired from the fitting curves of (Cd1-xMnx)3As2 compounds. (a) Temperature dependence of normalized ΔRxx with different components. The solid curves are fittings to the Lifshitz-Kosevich formula. (b) Values of cyclotron effective mass for compounds with x = 0-0.10. (c) The logarithmic ΔRxx(T)sinh(λ(T))/R0 versus 1/B for extracting the quantum lifetime. (d) Values of the mean free path for compounds with x = 0-0.10.
Fig. 5. (a) Fermi energy for (Cd1-xMnx)3As2 (0 ≤ x ≤ 0.10) compounds as a function of x. The inset shows a schematic band structure and the shift of Fermi level toward the conduction band for Cd3As2 and (Cd0.9Mn0.1)3As2 compounds. (b) The field-dependent Hall resistivities at 2 K for the compounds with x = 0-0.10. The red dotted line illustrates the nonlinearity of (Cd0.9Mn0.1)3As2 compound for comparison. (c) The carrier densities originated from Hall effect (nHall) and SdH oscillations (nSdH). (d) The Landau fan diagram constructed from the analysis of Δσxx data for the (Cd1-xMnx)3As2 (0 ≤ x ≤ 0.10) compounds. The inset represents all intercepts lie between 1/2-1/8 and 1/2 + 1/8.
x | FSdH (T) | kF (Å-1) | mcyc (m0) | vF (106 m s-1) | EF (meV) | τ (10-13 s) | I (nm) | μSdH (cm2 V-1 s-1) |
---|---|---|---|---|---|---|---|---|
0 | 90.8 | 0.053 | 0.061 | 0.86 | 347 | 1.92 | 165 | 5529 |
0.01 | 86.2 | 0.051 | 0.060 | 0.85 | 328 | 1.93 | 164 | 5599 |
0.03 | 74.5 | 0.048 | 0.058 | 0.84 | 295 | 2.30 | 192 | 7005 |
0.05 | 52.9 | 0.040 | 0.047 | 0.85 | 256 | 2.62 | 222 | 9683 |
0.07 | 48.3 | 0.038 | 0.048 | 0.78 | 235 | 3.04 | 238 | 10,988 |
0.10 | 36.2 | 0.033 | 0.038 | 0.80 | 215 | 3.61 | 291 | 16,827 |
Table 1 Estimated parameters from SdH oscillations at T =2 K of (Cd1-xMnx)3As2 compounds.
x | FSdH (T) | kF (Å-1) | mcyc (m0) | vF (106 m s-1) | EF (meV) | τ (10-13 s) | I (nm) | μSdH (cm2 V-1 s-1) |
---|---|---|---|---|---|---|---|---|
0 | 90.8 | 0.053 | 0.061 | 0.86 | 347 | 1.92 | 165 | 5529 |
0.01 | 86.2 | 0.051 | 0.060 | 0.85 | 328 | 1.93 | 164 | 5599 |
0.03 | 74.5 | 0.048 | 0.058 | 0.84 | 295 | 2.30 | 192 | 7005 |
0.05 | 52.9 | 0.040 | 0.047 | 0.85 | 256 | 2.62 | 222 | 9683 |
0.07 | 48.3 | 0.038 | 0.048 | 0.78 | 235 | 3.04 | 238 | 10,988 |
0.10 | 36.2 | 0.033 | 0.038 | 0.80 | 215 | 3.61 | 291 | 16,827 |
[1] |
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature, 438 (2005), pp. 197-200
PMID |
[2] |
Z.J. Wang, Y. Sun, X.Q. Chen, C. Franchini, G. Xu, H.M. Weng, X. Dai, Z. Fang, Phys. Rev. B, 85 (2012),195320
DOI URL |
[3] |
S.M. Young, S. Zaheer, J.C.Y. Teo, C.L. Kane, E.J. Mele, A.M. Rappe, Phys. Rev. Lett., 108 (2012), 140405
DOI URL |
[4] |
X.G. Wan, A.M. Turner, A. Vishwanath, S.Y. Savrasov, Phys. Rev. B, 83 (2011), 205101
DOI URL |
[5] |
B.J. Yang, N. Nagaosa, Nat. Commun., 5 (2014), p. 4898
DOI URL |
[6] | S.Y. Xu, C. Liu, S.K. Kushwaha, R. Sankar, J.W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T.R. Chang, H.T. Jeng, C.Y. Huang, W.F. Tsai, H. Lin, P.P. Shibayev, F.C. Chou, R.J. Cava, M.Z. Hasan, Science, 280 (2015), pp. 294-298 |
[7] | C. Shekhar, A.K. Nayak, Y. Sun, M. Schmidt, M. Nicklas, I. Leermakers, U. Zeitler, Y. Skourski, J. Wosnitza, Z.K. Liu, Y.L. Chen, W. Schnelle, H. Borrmann, Y. Grin, C. Felser, B.H. Yan, Nat. Phys., 11 (2015), pp. 645-650 |
[8] |
K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Solid State Commun., 146 (2008), pp. 351-355
DOI URL |
[9] |
T. Liang, Q. Gibson, M.N. Ali, M.H. Liu, R.J. Cava, N.P. Ong, Nat. Mater., 14 (2015), pp. 280-284
DOI PMID |
[10] |
X.L. Qi, R.D. Li, J.D. Zang, S.C. Zhang, Science, 323 (2009), pp. 1184-1187
DOI URL |
[11] |
R. Roy, Phys. Rev. B, 79 (2009), 195322
DOI URL |
[12] |
H. Wang, H.C. Wang, H.W. Liu, H. Lu, W.H. Yang, S. Jia, X.J. Liu, X.C. Xie, J. Wei, J. Wang, Nat. Mater., 15 (2016), pp. 38-42
DOI PMID |
[13] |
Z.K. Liu, B. Zhou, Y. Zhang, Z.J. Wang, H.M. Weng, D. Prabhakaran, S.K. Mo, Z.X. Shen, Z. Fang, X. Dai, Z. Hussain, Y.L. Chen, Science, 343 (2014), pp. 864-867
DOI URL |
[14] |
M.N. Ali, Q. Gibson, S. Jeon, B.B. Zhou, A. Yazdani, R.J. Cava, Inorg. Chem., 53 (2014), pp. 4062-4067
DOI URL |
[15] |
Z.J. Wang, H.M. Weng, Q.S. Wu, X. Dai, Z. Fang, Phys. Rev. B, 88 (2013), 125427
DOI URL |
[16] | B.Q. Lv, H.M. Weng, B.B. Fu, X.P. Wang, H. Miao, J. Ma, P. Richard, X.C. Huang, L.X. Zhao, G.F. Chen, Z. Fang, X. Dai, T. Qian, H. Ding, Phys. Rev. X, 5 (2015), 031013 |
[17] |
N.P. Armitage, E.J. Mele, A. Vishwanath, Rev. Mod. Phys., 90 (2018), 015001
DOI URL |
[18] |
Y.W. Liu, C. Zhang, X. Yuan, T. Lei, C. Wang, D.D. Sante, A. Narayan, L. He, S. Picozzi, S. Sanvito, R. Che, F.X. Xiu, NPG Asia Mater., 7 (2015), p. e221
DOI URL |
[19] |
E.Z. Zhang, Y.W. Liu, W.Y. Wang, C. Zhang, P. Zhou, Z.G. Chen, J. Zou, F.X. Xiu, ACS Nano, 9 (2015), pp. 8843-8850
DOI PMID |
[20] |
Y.W. Liu, R. Tiwari, A. Narayan, Z. Jin, X. Yuan, C. Zhang, F. Chen, L. Li, Z.C. Xia, S. Sanvito, P. Zhou, F.X. Xiu, Phys. Rev. B, 97 (2018), 085303
DOI URL |
[21] |
H.L. Wang, J.L. Ma, Q.Q. Wei, J.H. Zhao, J. Semicond., 41 (2020), 072903
DOI URL |
[22] |
H. Jin, Y. Dai, Y.D. Ma, X.R. Li, W. Wei, L. Yu, B.B. Huang, J. Mater. Chem. C, 3 (2015), pp. 3547-3551
DOI URL |
[23] |
X.L. Qi, T.L. Hughes, S.C. Zhang, Phys. Rev. B, 78 (2008), 195424
DOI URL |
[24] |
L. Fu, C.L. Kane, Phys. Rev. Lett., 102 (2009), 216403
DOI URL |
[25] |
W.K. Tse, A.H. MacDonald, Phys. Rev. Lett., 105 (2010),057401
DOI URL |
[26] |
C.Z. Chang, J.S. Zhang, X. Feng, J. Shen, Z.C. Zhang, M.H. Guo, K. Li, Y.B. Ou, P. Wei, L.L. Wang, Z.Q. Ji, Y. Feng, S.H. Ji, X. Chen, J.F. Jia, X. Dai, Z. Fang, S.C. Zhang, K. He, Y.Y. Wang, L. Lu, X.C. Ma, Q.K. Xue, Science, 340 (2013), pp. 167-170
DOI URL |
[27] |
H.J. Kim, K.S. Kim, J.F. Wang, V.A. Kulbachinskii, K. Ogawa, M. Sasaki, A. Ohnishi, M. Kitaura, Y.Y. Wu, L. Li, I. Yamamoto, J. Azuma, M. Kamada, V. Dobrosavljević, Phys. Rev. Lett., 110 (2013), 136601
DOI URL |
[28] |
G.A. Steigmann, J. Goodyear, Acta Cryst. B, 24 (1968), pp. 1062-1067
DOI URL |
[29] |
H.M. Rietveld, J. Appl. Cryst., 2 (1969), pp. 65-71
DOI URL |
[30] |
Z. Celinski, A. Burian, B. Rzepa, W. Zdanowicz, Mater. Res. Bull., 22 (1987), pp. 419-426
DOI URL |
[31] |
H. Wada, Y. Tanabe, Appl. Phys. Lett., 79 (2001), pp. 3302-3304
DOI URL |
[32] |
A. Pariari, P. Dutta, P. Mandal, Phys. Rev. B, 91 (2015), 155139
DOI URL |
[33] |
R. Laiho, A. Lashkul, E. Lähderanta, A. Mäkinen, V. Zakhvalinski, Solid State Commun., 83 (1992), pp. 375-378
DOI URL |
[34] |
J.Q. Yan, S. Okamoto, M.A. McGuire, A.F. May, R.J. McQueeney, B.C. Sales, Phys. Rev. B, 100 (2019), 104409
DOI URL |
[35] |
C.J.M. Denissen, H. Nishihara, J.C. van Gool, J.M. de Jonge, Phys. Rev. B, 33 (1986), pp. 7637-7646
DOI URL |
[36] |
H.L. Cao, J.F. Tian, I. Miotkowski, T. Shen, J.N. Hu, S. Qiao, Y.P. Chen, Phys. Rev. Lett., 108 (2012), 216803
DOI URL |
[37] |
L.P. He, X.C. Hong, J.K. Dong, J. Pan, Z. Zhang, J. Zhang, S.Y. Li, Phys. Rev. Lett., 113 (2014), 246402
DOI URL |
[38] |
S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Büchner, R.J. Cava, Phys. Rev. Lett., 113 (2014), 027603
DOI URL |
[39] |
H. Murakawa, M.S. Bahramy, M. Tokunaga, Y. Kohama, C. Bell, Y. Kaneko, N. Nagaosa, H.Y. Hwang, Y. Tokura, Science, 342 (2013), pp. 1490-1493
DOI URL |
[40] |
M. Uchida, Y. Nakazawa, S. Nishihaya, K. Akiba, M. Kriener, Y. Kozuka, A. Miyake, Y. Taguchi, M. Tokunaga, N. Nagaosa, Y. Tokura, M. Kawasaki, Nat. Commun., 8 (2017), p. 2274
DOI URL |
[41] |
N. Bansal, Y.S. Kim, M. Brahlek, E. Edrey, S. Oh, Phys. Rev. Lett., 109 (2012), 116804
DOI URL |
[42] |
S.J. Jeon, B.B. Zhou, A. Gyenis, B.E. Feldman, I. Kimchi, A.C. Potter, Q.D. Gibson, R.J. Cava, A. Vishwanath, A. Yazdani, Nat. Mater., 13 (2014), pp. 851-856
DOI URL |
[43] |
W. Desrat, S.S. Krishtopenko, B.A. Piot, M. Orlita, C. Consejo, S. Ruffenach, W. Knap, A. Nateprov, E. Arushanov, F. Teppe, Phys. Rev. B, 97 (2018), 245203
DOI URL |
[44] |
C.Z. Li, L.X. Wang, H.W. Liu, J. Wang, Z.M. Liao, D.P. Yu, Nat. Commun., 6 (2015), p. 10137
DOI URL |
[45] |
J. Xiong, Y.K. Luo, Y.H. Khoo, S. Jia, R.J. Cava, N.P. Ong, Phys. Rev. B, 86 (2012), 045314
DOI URL |
[46] |
L. Fang, Y. Jia, D.J. Miller, M.L. Latimer, Z.L. Xiao, U. Welp, G.W. Crabtree, W.K. Kwok, Nano Lett., 12 (2012), pp. 6164-6169
DOI URL |
[47] |
Y. Ando, J. Phys. Soc. Jpn., 82 (2013),102001
DOI URL |
[1] | X.T. Zhao, Y.Q. Zhao, W. Liu, Z.M. Dai, T.T. Wang, X.G. Zhao, Z.D. Zhang. Magnetization reversal of antiferromagnetically coupled perpendicular anisotropy films driven by current [J]. J. Mater. Sci. Technol., 2018, 34(5): 832-835. |
[2] | Guihua Li, Weimin Wang, Xiufang Bian, Li Wang, Jiteng Zhang, Rui Li, Tao Huang. Influences of Similar Elements on Glass Forming Ability and Magnetic Properties in Al-Ni-La Amorphous Alloy [J]. J Mater Sci Technol, 2010, 26(2): 146-150. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||