J. Mater. Sci. Technol. ›› 2021, Vol. 76: 231-246.DOI: 10.1016/j.jmst.2020.10.020
• Research Article • Previous Articles Next Articles
Hui Wanga,b,*(), Cheng Lua, Kiet Tieua, Yu Liua
Received:
2020-04-28
Revised:
2020-07-30
Accepted:
2020-08-14
Published:
2020-10-20
Online:
2020-10-20
Contact:
Hui Wang
About author:
*School of Mechanical, Materials and Mechatronic Engi-neering, University of Wollongong, New South Wales 2522, Australia.E-mail address: hw737@uowmail.edu.au (H. Wang).Hui Wang, Cheng Lu, Kiet Tieu, Yu Liu. A crystal plasticity FE study of macro- and micro-subdivision in aluminium single crystals {001}<110> multi-pass rolled to a high reduction[J]. J. Mater. Sci. Technol., 2021, 76: 231-246.
n | $\dot{\gamma}_{0}$(s-1) | h0 (MPa) | hs (MPa) | τ1 (MPa) | τ0 (MPa) | q |
---|---|---|---|---|---|---|
300 | 0.0001 | 100 | 0.01 | 6.3 | 6 | 1 |
Table 1 Parameters used in the Bassani-Wu hardening model.
n | $\dot{\gamma}_{0}$(s-1) | h0 (MPa) | hs (MPa) | τ1 (MPa) | τ0 (MPa) | q |
---|---|---|---|---|---|---|
300 | 0.0001 | 100 | 0.01 | 6.3 | 6 | 1 |
Slip plane | (1 1 1) | $(\overline{1} 11)$ | $(1 \overline{1} 1)$ | $(\overline{1}\overline{1} 1)$ | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Slip direction | $[01\overline{1}]$ | $[\overline{1}01]$ | $[1\overline{1}0]$ | $[01\overline{1}]$ | $[\overline{1}\overline{1}0]$ | [ | $[0\overline{1}\overline{1}]$ | $[\overline{1}01]$ | [ | $[0\overline{1}\overline{1}]$ | [ | $[\overline{1}10]$ |
Slip system | a1 | a2 | a3 | c1 | c3 | c2 | d1 | d2 | d3 | b1 | b2 | b3 |
Table 2 Notation of 12 slip systems.
Slip plane | (1 1 1) | $(\overline{1} 11)$ | $(1 \overline{1} 1)$ | $(\overline{1}\overline{1} 1)$ | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Slip direction | $[01\overline{1}]$ | $[\overline{1}01]$ | $[1\overline{1}0]$ | $[01\overline{1}]$ | $[\overline{1}\overline{1}0]$ | [ | $[0\overline{1}\overline{1}]$ | $[\overline{1}01]$ | [ | $[0\overline{1}\overline{1}]$ | [ | $[\overline{1}10]$ |
Slip system | a1 | a2 | a3 | c1 | c3 | c2 | d1 | d2 | d3 | b1 | b2 | b3 |
Fig. 2. (a) Crystal coordinate relative to sample coordinate of rotated-Cube orientation. (b) A {1 1 1} pole figure shows the relation between the three orientations and TD-rotation.
Fig. 3. Schematics of (a) multi-pass rolling FE model (Globalmodel), (b) Submodel1 at the surface, (d) Submodel1 at the centre, and (c) Submodel2 from Submodel1 at the surface.
Fig. 4. {1 1 1} pole figures after reductions of (a) 18 %, (b) 30 %, (c) 50 %, (d) 70 %, (e) 80 %, and (f) 90 % (upper panel: experiment [15], lower panel: simulation). The positions of rotated-Cube and Copper {1 1 2}<1 1 1> are indicated by circle and triangle marks, respectively.
Fig. 6. Distribution of TD-rotation and redundant shear strain γXY along the ND (from the lower surface to upper surface) after reductions of (a) 18 % (b) 50 %, (c) 70 %, (left panel: experiment [15], right panel: simulation).
Fig. 7. Distribution of simulated slip trace after (a) 1-pass, and (b) 2-pass. (c) Imbalance ratio of shear strain on slip systems, which was calculated according to (γa1-γb1)/max?(γa1,γb1). (d) Distribution of TD-rotation and slip trace in the rolling bite of 1-pass.
Fig. 8. Distribution of TD-rotation in the Submodel1 of the central region (a) after 1-pass, (e) before 2-pass, (f) after 2-pass, (g) after 3-pass, and (h) after 4-pass. (i) Distribution of TD-rotation and slip trace of an enlarged region after 2-pass. Distribution of TD-rotation after 1-pass in the Submodel1 with element sizes of (b) 60 μm × 60 μm in the Globalmodel and 2 μm × 2 μm in the Submodel1, (c) 30 μm × 30 μm in the Globalmodel and 2 μm × 2 μm in the Submodel1, and (d) 30 μm × 30 μm in the Globalmodel and 1 μm × 1 μm in the Submodel1. (j) A TEM image of the central region after 2-pass [15]. (k) Through-thickness EBSD maps after 2- and 3-pass in the experiment [15], where the maps are shown in grey scale, and pure white and black represent the most positive and negative TD-rotation, respectively. The region of Submodel1 in the corresponding experimental sample is marked in (k).
Fig. 9. (a) Distribution of TD-rotation in the Submodel1 at the surface. (b) A schematic drawing of substructure in Fig. 8(a). Distribution of TD-rotation in the Submodel1 and Submodel2 of region A (c, d) and region B (f, g). (e) Distribution of TD-rotation in the Globalmodel having the element size as small as that in the Submodel1. (h) Comparison of average TD-rotation through the thickness between Submodel1 and Globalmodel.
Increase of shear strain on slip systems | ΩTDP | ΩTD* | Redundant γXY | (ΩTD) | Relation | |||
---|---|---|---|---|---|---|---|---|
element | a1, a2 | b1, b2 | c3, d3 | Direction | Value | Value | Direction | ΩTDP+ΩTD*=ΩTD |
A, 1-pass | 0.0974 | 0.146 | 0 | +TD | -3.8° | -0.015 | -TD | (+)+(-)=(-), |ΩTDP| < |ΩTD*| |
A, 2-pass | 0.0647 | 0.131 | 0 | +TD | -2.9° | 0.02 | +TD | (+)+(-)=(+), |ΩTDP| > |ΩTD*| |
B, 1-pass | 0.156 | 0.0863 | 0 | -TD | 4.13° | 0.0157 | +TD | (-)+(+)=(+), |ΩTDP| < |ΩTD*| |
B, 5-pass | 0.463 | 0 | 0.242 | -TD | 2.14° | -0.212 | -TD | (-)+(+)=(-), |ΩTDP| > |ΩTD*| |
C, 1-pass | 0.134 | 0.126 | 0 | -TD | 0.31° | 0.0032 | +TD | (-)+(+)=(+), |ΩTDP| < |ΩTD*| |
D, 1-pass | 0.00583 | 0.216 | 0 | +TD | -11.3° | -0.0447 | -TD | (+)+(-)=(-), |ΩTDP| < |ΩTD*| |
E, 1-pass | 0.281 | 0.00135 | 0 | -TD | 15.3° | 0.02 | +TD | (-)+(+)=(+), |ΩTDP| < |ΩTD*| |
Table 3 Summary of deformation at different elements, where all values are those evolved in a single pass, not the cumulative ones.
Increase of shear strain on slip systems | ΩTDP | ΩTD* | Redundant γXY | (ΩTD) | Relation | |||
---|---|---|---|---|---|---|---|---|
element | a1, a2 | b1, b2 | c3, d3 | Direction | Value | Value | Direction | ΩTDP+ΩTD*=ΩTD |
A, 1-pass | 0.0974 | 0.146 | 0 | +TD | -3.8° | -0.015 | -TD | (+)+(-)=(-), |ΩTDP| < |ΩTD*| |
A, 2-pass | 0.0647 | 0.131 | 0 | +TD | -2.9° | 0.02 | +TD | (+)+(-)=(+), |ΩTDP| > |ΩTD*| |
B, 1-pass | 0.156 | 0.0863 | 0 | -TD | 4.13° | 0.0157 | +TD | (-)+(+)=(+), |ΩTDP| < |ΩTD*| |
B, 5-pass | 0.463 | 0 | 0.242 | -TD | 2.14° | -0.212 | -TD | (-)+(+)=(-), |ΩTDP| > |ΩTD*| |
C, 1-pass | 0.134 | 0.126 | 0 | -TD | 0.31° | 0.0032 | +TD | (-)+(+)=(+), |ΩTDP| < |ΩTD*| |
D, 1-pass | 0.00583 | 0.216 | 0 | +TD | -11.3° | -0.0447 | -TD | (+)+(-)=(-), |ΩTDP| < |ΩTD*| |
E, 1-pass | 0.281 | 0.00135 | 0 | -TD | 15.3° | 0.02 | +TD | (-)+(+)=(+), |ΩTDP| < |ΩTD*| |
Fig. 11. Evolution of (a) material spin rate about TD, (b) shear strain rates on slip systems, (c) TD-rotation, and (d) stress, as a function of rolling time at element A in the Globalmodel.
Fig. 13. (a) Evolution of cumulative shear strain at element A in the Globalmodel. Distribution of (b) strength (τc) on slip systems, (c) shear strain rate on a1 and b1, (d) TD-rotation, and (e) cumulative shear strain on a1 and b1 at different rolling time in the Submodel2 of region A.
Fig. 15. A schematic shows substructure formation. (a) Only one set of slip systems activated in stage1, (b) the activation of the other set of slip systems in stage2 leads to the formation of a cell-block structure (in matrix bands), (c) the two equally activated sets of slip systems in stage2 result in an equi-axised structure (in transition bands), and (d) the high activation of one set of slip systems in different regions gives rise to the sharp change of crystal rotation between domains (band III in the centre region). Shear strain on a1 and b1 at (e) element A, and (g) element C in the Globalmodel during 1-pass. Distribution of TD-rotation in Submodel2 of (f) region A, and (h) region C after 1-pass. (i) Shear strain at point D and E marked in (j). (j) Distribution of TD-rotation at the central region of Submodel1 after 1-pass.
[1] | Q. Liu, N. Hansen, Proc. R. Soc. A Math.Phys. Eng. Sci., 454 (1998), pp. 2555-2591 |
[2] |
J.A. Wert, Q. Liu, N. Hansen, Acta Mater., 45 (1997), pp. 2565-2576
DOI URL |
[3] |
N. Hansen, D.J. Jensen, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 357 (1999), pp. 1447-1469
DOI URL |
[4] |
Q. Liu, J. Wert, N. Hansen, Acta Mater., 48 (2000), pp. 4267-4279
DOI URL |
[5] | G.I. Taylor, Twenty-Eighth May Lect. to Inst. Met. (1938), pp. 307-325 |
[6] |
P. Van Houtte, S. Li, M. Seefeldt, L. Delannay, Int. J. Plast., 21 (2005), pp. 589-624
DOI URL |
[7] |
Z. Zhao, S. Kuchnicki, R. Radovitzky, A. Cuitiño, Acta Mater., 55 (2007), pp. 2361-2373
DOI URL |
[8] |
A. Bhattacharyya, E. El-Danaf, S.R. Kalidindi, R.D. Doherty, Int. J. Plast., 17 (2001), pp. 861-883
DOI URL |
[9] |
J.L. Raphanel, P. Van Houtte, Acta Metall., 33 (1985), pp. 1481-1488
DOI URL |
[10] |
I.J. Beyerlein, L.S. Tóth, Prog. Mater. Sci., 54 (2009), pp. 427-510
DOI URL |
[11] | R. Hill, J. Mech. Phys. Solids, 13 (1965), pp. 89-101 |
[12] | J.W. Hutchinson, Proc. Roy Soc. Ser. A Math. Phys. Sci., 319 (1970), pp. 247-272 |
[13] |
A. Prakash, W.G. Nöhring, R.A. Lebensohn, H.W. Höppel, E. Bitzek, Mater. Sci. Eng. A, 631 (2015), pp. 104-119
DOI URL |
[14] |
H.R. Wenk, P. Van Houtte, Rep. Prog. Phys., 67 (2004), pp. 1367-1428
DOI URL |
[15] |
Z.J. Li, A. Godfrey, Q. Liu, Acta Mater., 52 (2004), pp. 149-160
DOI URL |
[16] |
Z.J. Li, Q. Liu, Mater. Sci. Eng. A, 338 (2002), pp. 237-242
DOI URL |
[17] |
Z.J. Li, A. Godfrey, Q. Liu, Scr. Mater., 45 (2001), pp. 847-852
DOI URL |
[18] |
S. Li, F. Sun, H. Li, Acta Mater., 58 (2010), pp. 1317-1331
DOI URL |
[19] |
H. Wang, L. Su, H. Yu, C. Lu, A.K. Tieu, Y. Liu, J. Zhang, Mater. Sci. Eng. A, 726 (2018), pp. 93-101
DOI URL |
[20] | H. Wang, C. Lu, K. Tieu, P. Wei, H. Yu, Adv. Eng. Mater., 21 (2019) 2018008 |
[21] |
H. Wang, C. Lu, K. Tieu, Crystals, 9 (2019), p. 119
DOI URL |
[22] |
G.Y. Deng, A.K. Tieu, L.Y. Si, L.H. Su, C. Lu, H. Wang, M. Liu, H.T. Zhu, X.H. Liu, Comput. Mater. Sci., 81 (2014), pp. 2-9
DOI URL |
[23] |
T. Inoue, A. Yanagida, J. Yanagimoto, Mater. Lett., 106 (2013), pp. 37-40
DOI URL |
[24] |
F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, D. Raabe, Acta Mater., 58 (2010), pp. 1152-1211
DOI URL |
[25] |
T.E. Buchheit, G.W. Wellman, C.C. Battaile, Int. J. Plast., 21 (2005), pp. 221-249
DOI URL |
[26] | F.J. Harewood, P.E. McHugh, Comput.Mater. Sci., 37 (2006), pp. 442-453 |
[27] | J.Q. Da Fonseca, L. Ko, The Kinematics of Deformation and the Development of Substructure in the Particle Deformation Zone, IOP Conf. Ser. Mater. Sci. Eng. (2015) |
[28] |
P. Bate, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 357 (1999), pp. 1589-1601
DOI URL |
[29] |
M. Seefeldt, L. Delannay, B. Peeters, E. Aernoudt, P. Van Houtte, Acta Mater., 49 (2001), pp. 2129-2143
DOI URL |
[30] |
Z. Zhang, D. Lunt, H. Abdolvand, A.J. Wilkinson, M. Preuss, F.P.E. Dunne, Int. J. Plast., 108 (2018), pp. 88-106
DOI URL |
[31] |
N. Grilli, K.G.F. Janssens, J. Nellessen, S. Sandlöbes, D. Raabe, Int. J. Plast., 100 (2018), pp. 104-121
DOI URL |
[32] |
H. Wang, Mater. Res. Express, 6 (2020), p. 1265k8
DOI URL |
[33] |
R.J. Asaro, J. Appl. Mech. Trans. ASME, 50 (1983), pp. 921-934
DOI URL |
[34] | Ti. Wu, J. Bassani, C. Laird, Proc.R. Soc. London. Ser. A Math. Phys. Sci., 435 (1991), pp. 1-19 |
[35] | J. Bassani, T. Wu, Proc. R. Soc. London. Ser. A Math.Phys. Sci., 435 (1991), pp. 21-41 |
[36] |
G. Lin, K.S. Havner, Int. J. Plast., 12 (1996), pp. 695-718
DOI URL |
[37] |
Y. Liu, S. Varghese, J. Ma, M. Yoshino, H. Lu, R. Komanduri, Int. J. Plast., 24 (2008), pp. 1990-2015
DOI URL |
[38] |
P. Franciosi, M. Berveiller, A. Zaoui, Acta Metall., 28 (1980), pp. 273-283
DOI URL |
[39] |
Q. Liu, C. Maurice, J. Driver, N. Hansen, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 29 (1998), pp. 2333-2344
DOI URL |
[40] |
A. Akef, J.H. Driver, Mater. Sci. Eng. A, 132 (1991), pp. 245-255
DOI URL |
[41] | Y. Huang, A User-Material Subroutine Incorporating Single Crystal Plasticity in the ABAQUS Finite Element Program, Harvard University (1991) |
[42] |
F. Bachmann, R. Hielscher, H. Schaeben, Solid State Phenom., 160 (2010), pp. 63-68
DOI URL |
[43] |
R. Becker, J.F. Butler, H. Hu, L.A. Lalli, Metall. Trans. A, 22 (1991), pp. 45-58
DOI URL |
[44] |
J.F. Butler, H. Hu, Mater. Sci. Eng. A, 114 (1989), pp. L29-L33
DOI URL |
[45] |
R.E. Bauer, H. Mecking, K. Lücke, Mater. Sci. Eng., 27 (1977), pp. 163-180
DOI URL |
[46] |
K. Kashihara, Y. Tsujimoto, D. Terada, N. Tsuji, Mater. Charact., 75 (2013), pp. 129-137
DOI URL |
[47] |
P. Wagner, O. Engler, K. Lücke, Acta Metall. Mater., 43 (1995), pp. 3799-3812
DOI URL |
[48] |
J.A. Wert, Acta Mater., 50 (2002), pp. 3127-3141
DOI URL |
[49] |
L. Su, C. Lu, A.A. Gazder, A.A. Saleh, G. Deng, K. Tieu, H. Li, J. Alloys. Compd., 594 (2014), pp. 12-22
DOI URL |
[50] |
N. Kamikawa, N. Tsuji, X. Huang, N. Hansen, Mater. Trans., 48 (2007), pp. 1978-1985
DOI URL |
[51] |
D. Raabe, Z. Zhao, S.J. Park, F. Roters, Acta Mater., 50 (2002), pp. 421-440
DOI URL |
[52] | H. Paul, J. Driver, C. Maurice, M. Miszczyk, D. Piot, Arch. Metall. Mater., 54 (2009), pp. 65-74 |
[53] |
T. Kamijo, H. Adachihara, H. Fukutomi, Acta Metall. Mater., 41 (1993), pp. 975-985
DOI URL |
[54] |
A. Guery, F. Hild, F. Latourte, S. Roux, Int. J. Plast., 81 (2016), pp. 249-266
DOI URL |
[55] |
C. Lu, G.Y. Deng, A.K. Tieu, L.H. Su, H.T. Zhu, X.H. Liu, Acta Mater., 59 (2011), pp. 3581-3592
DOI URL |
[56] |
N. Afrin, M.Z. Quadir, W. Xu, M. Ferry, Acta Mater., 60 (2012), pp. 6288-6300
DOI URL |
[57] |
A. Ray, B.J. Diak, Scr. Mater., 62 (2010), pp. 606-609
DOI URL |
[58] |
J.H. Driver, M.C. Theyssier, C. Maurice, Mater. Sci. Technol., 12 (1996), pp. 851-858
DOI URL |
[59] |
F.J. Humphreys, M.G. Ardakani, Acta Metall. Mater., 42 (1994), pp. 749-761
DOI URL |
[60] |
O.V. Mishin, B. Bay, G. Winther, D.J. Jensen, Acta Mater., 52 (2004), pp. 5761-5770
DOI URL |
[61] |
T. Kamijo, A. Inoue, H. Fukutomi, Acta Metall. Mater., 41 (1993), pp. 1245-1251
DOI URL |
[62] | C.S. Lee, B.J. Duggan, Metall. Trans. A, Phys. Metall. Mater. Sci., 22 A (1991), pp. 2637-2643 |
[63] |
K. Kashihara, Y. Komi, D. Terada, N. Tsuji, Mater. Trans., 55 (2014), pp. 1656-1661
DOI URL |
[64] |
M. Ardeljan, M. Knezevic, T. Nizolek, I.J. Beyerlein, N.A. Mara, T.M. Pollock, Int. J. Plast., 74 (2015), pp. 35-57
DOI URL |
[65] |
M. Knezevic, B. Drach, M. Ardeljan, I.J. Beyerlein, Comput. Methods Appl. Mech. Eng., 277 (2014), pp. 239-259
DOI URL |
[66] | H. Wang, C. Lu, A.K. Tieu, L. Su, G. Deng, Int. J. Mater. Res., 12 (2019), pp. 161-171 |
[67] |
A. Arsenlis, D.M. Parks, Acta Mater., 47 (1999), pp. 1597-1611
DOI URL |
[68] | A.K. Kanjarla, L. Delannay, P. Van Houtte, Metall. Mater. Trans. A Phys.Metall. Mater. Sci., 42 (2011), pp. 660-668 |
[69] |
H. Petryk, M. Kursa, J. Mech. Phys. Solids, 61 (2013), pp. 1854-1875
DOI URL |
[70] |
C.S. Lee, B.J. Duggan, R.E. Smallman, Acta Metall. Mater., 41 (1993), pp. 2265-2270
DOI URL |
[71] |
D. Kuhlmann-Wilsdorf, Acta Mater., 47 (1999), pp. 1697-1712
DOI URL |
[72] |
J.A. Wert, Q. Liu, N. Hansen, Acta Metall. Mater., 43 (1995), pp. 4153-4163
DOI URL |
[73] |
X. Huang, G. Winther, Philos. Mag., 87 (2007), pp. 5189-5214
DOI URL |
[74] |
G. Winther, X. Huang, Philos. Mag., 87 (2007), pp. 5215-5235
DOI URL |
[75] |
G. Winther, X. Huang, N. Hansen, Acta Mater., 48 (2000), pp. 2187-2198
DOI URL |
[1] | Tingting Wu, Guoqiang Deng, Chao Zhen. Metal oxide mesocrystals and mesoporous single crystals: synthesis, properties and applications in solar energy conversion [J]. J. Mater. Sci. Technol., 2021, 73(0): 9-22. |
[2] | Yeshun Huang, Xinguang Wang, Chuanyong Cui, Zihao Tan, Jinguo Li, Yanhong Yang, Jinlai Liu, Yizhou Zhou, Xiaofeng Sun. Effect of thermal exposure on the microstructure and creep properties of a fourth-generation Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 69(0): 180-187. |
[3] | Min Yang, Jun Zhang, Weimin Gui, Songsong Hu, Zhuoran Li, Min Guo, Haijun Su, Lin Liu. Coupling phase field with creep damage to study γʹ evolution and creep deformation of single crystal superalloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 129-137. |
[4] | Jiachen Zhang, Lin Liu, Taiwen Huang, Jia Chen, Kaili Cao, Xinxin Liu, Jun Zhang, Hengzhi Fu. Coarsening kinetics of γ′ precipitates in a Re-containing Ni-based single crystal superalloy during long-term aging [J]. J. Mater. Sci. Technol., 2021, 62(0): 1-10. |
[5] | Wanshun Xia, Xinbao Zhao, Liang Yue, Ze Zhang. A review of composition evolution in Ni-based single crystal superalloys [J]. J. Mater. Sci. Technol., 2020, 44(0): 76-95. |
[6] | Qianqian Liu, Quan Zhang, Lu Zhang, Wei-Lin Dai. Highly efficient single-crystalline NaNb1-XTaXO3 (X = 0.125) wires: The synergistic effect of tantalum-doping and morphology on photocatalytic hydrogen evolution [J]. J. Mater. Sci. Technol., 2020, 54(0): 20-30. |
[7] | Liu Liu, Jie Meng, Jinlai Liu, Mingke Zou, Haifeng Zhang, Xudong Sun, Yizhou Zhou. Influences of Re on low-cycle fatigue behaviors of single crystal superalloys at intermediate temperature [J]. J. Mater. Sci. Technol., 2019, 35(9): 1917-1924. |
[8] | Quanzhao Yue, Lin Liu, Wenchao Yang, Chuang He, Dejian Sun, Taiwen Huang, Jun Zhang, Hengzhi Fu. Stress dependence of the creep behaviors and mechanisms of a third-generation Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2019, 35(5): 752-763. |
[9] | Lei Zhang, Weijun Ren, Xiaohua Luo, Zhidong Zhang. Magnetic and magnetotransport properties of single-crystalline R2PdGe6 (R = Pr, Gd and Tb) [J]. J. Mater. Sci. Technol., 2019, 35(5): 764-768. |
[10] | Jingjing Liang, Yongsheng Liu, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Epitaxial growth and oxidation behavior of an overlay coating on a Ni-base single-crystal superalloy by laser cladding [J]. J. Mater. Sci. Technol., 2019, 35(2): 344-350. |
[11] | Sun Jingxia, Liu Jinlai, Liu Lirong, Zhou Yizhou, Li Jinguo, Sun Xiaofeng. Effects of Al on microstructural stability and related stress-rupture properties of a third-generation single crystal superalloy [J]. J. Mater. Sci. Technol., 2019, 35(11): 2537-2542. |
[12] | Guowei Wang, Jingjing Liang, Yanhong Yang, Yu Shi, Yizhou Zhou, Tao Jin, Xiaofeng Sun. Effects of scanning speed on microstructure in laser surface-melted single crystal superalloy and theoretical analysis [J]. J. Mater. Sci. Technol., 2018, 34(8): 1315-1324. |
[13] | S.S. Cai, , . Orientation dependence of deformation twinning in Cu single crystals [J]. J. Mater. Sci. Technol., 2018, 34(8): 1364-1370. |
[14] | Le Chang, Chang-Yu Zhou, Hong-Xi Liu, Jian Li, Xiao-Hua He. Orientation and strain rate dependent tensile behavior of single crystal titanium nanowires by molecular dynamics simulations [J]. J. Mater. Sci. Technol., 2018, 34(5): 864-877. |
[15] | Guowei Wang, Jingjing Liang, Yizhou Zhou, Libin Zhao, Tao Jin, Xiaofeng Sun. Variation of crystal orientation during epitaxial growth of dendrites by laser deposition [J]. J. Mater. Sci. Technol., 2018, 34(4): 732-735. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||