J. Mater. Sci. Technol. ›› 2022, Vol. 131: 276-286.DOI: 10.1016/j.jmst.2022.03.040
• Research Article • Previous Articles
Kai Chena, Qunbo Fana,b,*(), Jiahao Yaoa,b, Lin Yanga,b, Shun Xua,b, Wei Leia, Duoduo Wanga, Jingjiu Yuana, Haichao Gonga, Xingwang Chenga,b
Received:
2022-01-26
Revised:
2022-03-14
Accepted:
2022-03-14
Published:
2022-05-29
Online:
2022-05-29
Contact:
Qunbo Fan
About author:
*E-mail address:fanqunbo@bit.edu.cn (Q. Fan)Kai Chen, Qunbo Fan, Jiahao Yao, Lin Yang, Shun Xu, Wei Lei, Duoduo Wang, Jingjiu Yuan, Haichao Gong, Xingwang Cheng. Composition design of a novel Ti-6Mo-3.5Cr-1Zr alloy with high-strength and ultrahigh-ductility[J]. J. Mater. Sci. Technol., 2022, 131: 276-286.
Elements | Ti | Mo | Cr | Zr | C | N | O | H |
---|---|---|---|---|---|---|---|---|
Nominal | Bal. | 6 | 3.5 | 1 | - | - | - | - |
Measured | Bal. | 6.14 | 3.46 | 0.86 | 0.0092 | 0.0050 | 0.080 | 0.0041 |
Table 1. Nominal and measured chemical compositions of the alloy in wt.%.
Elements | Ti | Mo | Cr | Zr | C | N | O | H |
---|---|---|---|---|---|---|---|---|
Nominal | Bal. | 6 | 3.5 | 1 | - | - | - | - |
Measured | Bal. | 6.14 | 3.46 | 0.86 | 0.0092 | 0.0050 | 0.080 | 0.0041 |
Fig. 2. Microstructural analysis of the as-quenched Ti-6Mo-3.5Cr-1Zr alloy. (a) EBSD orientation distribution map. (b) SAED pattern with beam//[011]β//[11$\bar{2}$0]ω1//[2$\bar{1}\bar{1}$0]ω2. (c) TEM DF image acquired using the ω reflection.
Fig. 3. Mechanical properties of the Ti-6Mo-3.5Cr-1Zr alloy. (a) Engineering stress-strain curves of the as-quenched and homogenized states. (b) True stress-strain curve of the as-quenched alloy and corresponding strain hardening rate curve. (c) Comparison of the mechanical properties of as-quenched Ti-6Mo-3.5Cr-1Zr and the alloys reported in the literature (the corresponding compositions are shown in Table S1 in the Supplementary Material, the error bar is calculated from three sets of parallel tests).
Fig. 4. In-situ EBSD analysis of the alloy at 0%–3% strain. (a) True stress–strain curve of the in-situ tensile test and the variation of the stress-induced ω volume fraction with different macro strains. (b–e) Orientation distribution maps at 0%, 1%, 1.5%, and 3% strains, respectively. (f) Phase map at 3% strain. (g) Pole Figure (PF) comparison of (110)β and (1$\bar{1}$01)SIω at 3% strain. (h, i) Inverse Pole Figure (IPF) comparison between the 1.5% and 3% strains for the ω and β phases, respectively.
Fig. 5. In-situ DIC analysis of the alloy during the plastic deformation stage. (a) Band contrast (BC) map at 3% macro strain. (b) Strain distribution map at 3% macro strain. (c) Local strain variation at P1, P2, and P3 under different macro strains (the positions of the three points are recorded in (b)).
Fig. 6. Ex-situ EBSD analysis of the alloy at 5% and 10% macro strains. (a) and (e) IPF maps. (b) and (f) Phase maps. (c) and (g) BC maps. (d) and (h) GND maps.
Fig. 7. TEM analysis of the tensile samples at different strains: (a-d) 1.5%. (e-g) 2.5%. (a, e) TEM bright-field (BF) images. (b, f) SAED pattern recorded from the red circle marked zone in (a) and (e), respectively. (c, d) DF images of the ω1 and ω2 variants based on the reflections in (b), corresponding to the dotted frame zone in (a). (g) DF image corresponding to (e).
Fig. 8. TEM analysis of the tensile sample under 10% macro strain. (a) BF image. (b) SAED pattern along the [011]β zone axis recorded from the circled area in (a). (c) DF image corresponding to (a). (d) HRTEM image of the ω/ωtw interface viewing along the [11$\bar{2}$0]ω axis. (e, f) Inverse FFT filtered HRTEM images and FFT patterns (inset) of the S1 and S2 areas in (d), respectively.
Fig. 9. TEM analysis of the tensile sample at 20% and 30% macro strains. (a, d) Fragmentation of the stress-induced structures. (b, e) Dislocation tangle inside the bands (the band in (e) was broken due to the large degree of deformation). (c, f) Dislocation tangle in the β matrix.
Fig. 10. In-situ TEM analysis of the interaction between the stress-induced band and the dislocation movement. (a–d) Strain resolved TEM BF images recorded at ε = 5%, 10%, 20%, and 30%, respectively. The inset in (d) shows the crack propagation behavior. (e) Inverse FFT filtered HRTEM image of the stress-induced ω/β interface viewing along the [$\bar{1}$11]β axis. The inset in (e) shows the lattice fringes image of the interface. (f) Schematic diagrams of the DPU effect and new bands formation.
Grain | 1.5% | 2% | 2.5% | 3% |
---|---|---|---|---|
A | ($\bar{1}21$) | ($\bar{1}21$), ($1\bar{2}3$) | ($\bar{1}21$), ($1\bar{2}3$) | ($\bar{1}21$), ($1\bar{2}3$) |
B | ($\bar{1}10$) | ($\bar{1}10$), ($23\bar{1}$) | ($\bar{1}10$), ($23\bar{1}$), ($32\bar{1}$) | ($\bar{1}10$), ($23\bar{1}$), ($32\bar{1}$) |
C | ($\bar{1}10$), ($2\bar{3}1$) | ($\bar{1}10$), ($2\bar{3}1$) | ($\bar{1}10$), ($2\bar{3}1$) | ($\bar{1}10$), ($2\bar{3}1$) |
D | (123) | (123), ($12\bar{1}$) | (123), ($12\bar{1}$) | (123), ($12\bar{1}$) |
E | - | ($12\bar{1}$) | ($12\bar{1}$), ($\bar{2}31$) | ($12\bar{1}$), ($\bar{2}31$), (110) |
F | ($3\bar{2}1$) | ($3\bar{2}1$), ($1\bar{1}2$), | ($3\bar{2}1$), ($1\bar{1}2$), | ($3\bar{2}1$), ($1\bar{1}2$), |
($21\bar{1}$), ($21\bar{3}$) | ($21\bar{1}$), ($21\bar{3}$) | ($21\bar{1}$),($21\bar{3}$) | ||
G | ($\bar{1}23$) | ($\bar{1}23$), ($11\bar{2}$), | ($1\bar{2}3$), ($11\bar{2}$) | ($\bar{1}23$), ($11\bar{2}$), |
($1\bar{2}3$) | ($1\bar{2}3$) | ($1\bar{2}3$) | ||
H | ($1\bar{1}0$) | ($1\bar{1}0$), (112) | ($1\bar{1}0$), (112) | ($1\bar{1}0$), (112) |
I | ($1\bar{1}0$) | ($1\bar{1}0$) | ($1\bar{1}0$) | ($1\bar{1}0$), (110) |
Table 2. Statistics of the habit planes of the stress-induced ω phase precipitated from the β matrix in grains A-I (Fig. 4(b)).
Grain | 1.5% | 2% | 2.5% | 3% |
---|---|---|---|---|
A | ($\bar{1}21$) | ($\bar{1}21$), ($1\bar{2}3$) | ($\bar{1}21$), ($1\bar{2}3$) | ($\bar{1}21$), ($1\bar{2}3$) |
B | ($\bar{1}10$) | ($\bar{1}10$), ($23\bar{1}$) | ($\bar{1}10$), ($23\bar{1}$), ($32\bar{1}$) | ($\bar{1}10$), ($23\bar{1}$), ($32\bar{1}$) |
C | ($\bar{1}10$), ($2\bar{3}1$) | ($\bar{1}10$), ($2\bar{3}1$) | ($\bar{1}10$), ($2\bar{3}1$) | ($\bar{1}10$), ($2\bar{3}1$) |
D | (123) | (123), ($12\bar{1}$) | (123), ($12\bar{1}$) | (123), ($12\bar{1}$) |
E | - | ($12\bar{1}$) | ($12\bar{1}$), ($\bar{2}31$) | ($12\bar{1}$), ($\bar{2}31$), (110) |
F | ($3\bar{2}1$) | ($3\bar{2}1$), ($1\bar{1}2$), | ($3\bar{2}1$), ($1\bar{1}2$), | ($3\bar{2}1$), ($1\bar{1}2$), |
($21\bar{1}$), ($21\bar{3}$) | ($21\bar{1}$), ($21\bar{3}$) | ($21\bar{1}$),($21\bar{3}$) | ||
G | ($\bar{1}23$) | ($\bar{1}23$), ($11\bar{2}$), | ($1\bar{2}3$), ($11\bar{2}$) | ($\bar{1}23$), ($11\bar{2}$), |
($1\bar{2}3$) | ($1\bar{2}3$) | ($1\bar{2}3$) | ||
H | ($1\bar{1}0$) | ($1\bar{1}0$), (112) | ($1\bar{1}0$), (112) | ($1\bar{1}0$), (112) |
I | ($1\bar{1}0$) | ($1\bar{1}0$) | ($1\bar{1}0$) | ($1\bar{1}0$), (110) |
Grain No. | Euler angle (°) | Top 3 SFs for {332}<113> twinning | Variant corresponding to the max SF | ||||
---|---|---|---|---|---|---|---|
φ1 | Ф | φ2 | |||||
1 | 120 | 44 | 15 | 0.478 | 0.403 | 0.374 | {$\bar{3}23$}〈$\bar{1}\bar{3}1$〉 |
2 | 154 | 104 | 52 | 0.466 | 0.446 | 0.235 | {$3\bar{3}2$}〈$1\bar{1}\bar{3}$〉 |
3 | 186 | 20 | 21 | 0.368 | 0.325 | 0.276 | {$\bar{3}32$}〈$\bar{1}1\bar{3}$〉 |
4 | 190 | 35 | 22 | 0.414 | 0.297 | 0.292 | {$\bar{3}32$}〈$\bar{1}1\bar{3}$〉 |
5 | 66 | 36 | 26 | 0.392 | 0.341 | 0.253 | {$23\bar{3}$}〈$\bar{3}1\bar{1}$〉 |
Table 3. Statistics of the SFs corresponding to grains 1-5 in Fig. 6(b).
Grain No. | Euler angle (°) | Top 3 SFs for {332}<113> twinning | Variant corresponding to the max SF | ||||
---|---|---|---|---|---|---|---|
φ1 | Ф | φ2 | |||||
1 | 120 | 44 | 15 | 0.478 | 0.403 | 0.374 | {$\bar{3}23$}〈$\bar{1}\bar{3}1$〉 |
2 | 154 | 104 | 52 | 0.466 | 0.446 | 0.235 | {$3\bar{3}2$}〈$1\bar{1}\bar{3}$〉 |
3 | 186 | 20 | 21 | 0.368 | 0.325 | 0.276 | {$\bar{3}32$}〈$\bar{1}1\bar{3}$〉 |
4 | 190 | 35 | 22 | 0.414 | 0.297 | 0.292 | {$\bar{3}32$}〈$\bar{1}1\bar{3}$〉 |
5 | 66 | 36 | 26 | 0.392 | 0.341 | 0.253 | {$23\bar{3}$}〈$\bar{3}1\bar{1}$〉 |
Phase | c11 | c12 | c13 | c33 | c44 | G |
---|---|---|---|---|---|---|
β | 147 | 97 | - | - | 16 | 19 |
ω | 199 | 100 | 60 | 245 | 48 | 55 |
Table 4. Second-order elastic coefficients cij (GPa) and shear modulus G (GPa) of β and ω.
Phase | c11 | c12 | c13 | c33 | c44 | G |
---|---|---|---|---|---|---|
β | 147 | 97 | - | - | 16 | 19 |
ω | 199 | 100 | 60 | 245 | 48 | 55 |
Phase | Space group | a (Å) | b (Å) | c (Å) | Hf (eV atom-1) | Ec (eV atom-1) |
---|---|---|---|---|---|---|
β | 229 (Im$\bar{3}$m) | 2.816/2.785 | 2.816/2.785 | 2.816/2.785 | -8.23 | -14.86 |
ω | 191 (P6/mmm) | 4.577/4.552 | 4.577/4.552 | 2.829/2.775 | -8.31 | -15.48 |
Table 5. Lattice constant (before/after geometrical optimization), formation enthalpy, and cohesive energy of β and ω.
Phase | Space group | a (Å) | b (Å) | c (Å) | Hf (eV atom-1) | Ec (eV atom-1) |
---|---|---|---|---|---|---|
β | 229 (Im$\bar{3}$m) | 2.816/2.785 | 2.816/2.785 | 2.816/2.785 | -8.23 | -14.86 |
ω | 191 (P6/mmm) | 4.577/4.552 | 4.577/4.552 | 2.829/2.775 | -8.31 | -15.48 |
[1] |
M. Niinomi, Mater. Sci. Eng. A 243 (1998) 231-236.
DOI URL |
[2] |
M. Long, H.J. Rack, Biomaterials 19 (1998) 1621-1639.
PMID |
[3] |
X. Liu, P.K. Chu, C. Ding, Mater. Sci. Eng. R 47 (2004) 49-121.
DOI URL |
[4] |
Y. Fu, W.L. Xiao, D. Kent, M.S. Dargusch, J.S. Wang, X.Q. Zhao, C.L. Ma, Scr. Mater. 187 (2020) 285-290.
DOI URL |
[5] |
M. Marteleur, F. Sun, T. Gloriant, P. Vermaut, P.J. Jacques, F. Prima, Scr. Mater. 66 (2012) 749-752.
DOI URL |
[6] |
T.S. Kuan, R.R. Ahrens, S.L. Sass, Metall. Trans. A 6 (1975) 1767-1774.
DOI URL |
[7] |
J.Y. Zhang, Y.Y. Fu, Y.J. Wu, B.N. Qian, Z. Chen, A. lnoue, Y. Wu, Y. Yang, F. Sun, Mater. Res. Lett. 8 (2020) 247-253.
DOI URL |
[8] | X. Liu, Y. Qian, Q.B. Fan, Y. Zhou, X.J. Zhu, D.D. Wang, J. Alloy. Compd. 826 (2020) 154209. |
[9] |
Z. Shen, R.H. Wagoner, W.A.T. Clark, Scr. Metall. 20 (1986) 921-926.
DOI URL |
[10] | J.G. Kuang, T. Mura, J. Appl. Phys. 39 (1968) 109-119. |
[11] |
D.B. Liu, Y.M. He, B. Zhang, L. Shen, Acta Mater. 80 (2014) 350-364.
DOI URL |
[12] |
A. Devaraj, V.V. Joshi, A. Srivastava, S. Manandhar, V. Moxson, V.A. Duz, C. Lavender, Nat. Commun. 7 (2016) 11176.
DOI PMID |
[13] |
C.L. Li, X.J. Mi, W.J. Ye, S.X. Hui, Y. Yu, W.Q. Wang, J. Alloy. Compd. 550 (2013) 23-30.
DOI URL |
[14] |
C.L. Li, X.J. Mi, W.J. Ye, S.X. Hui, D. Lee, Y. Lee, Mater. Sci. Eng. A 580 (2013) 250-256.
DOI URL |
[15] |
Y.Y. Chen, Z.X. Du, S.L. Xiao, L.J. Xu, J. Tian, J. Alloy. Compd. 586 (2014) 588-592.
DOI URL |
[16] |
J.Y. Zhang, F. Sun, Z. Chen, Y. Yang, B.L. Shen, J. Li, F. Prima, Mater. Res. Lett. 7 (2019) 251-257.
DOI URL |
[17] |
F. Sun, J.Y. Zhang, M. Marteleur, C. Brozek, F. Prima, Scr. Mater. 94 (2015) 17-20.
DOI URL |
[18] |
C. Brozek, F. Sun, P. Vermaut, Y. Millet, A. Lenain, Scr. Mater. 114 (2016) 60-64.
DOI URL |
[19] |
D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, T. Yashiro, Mater. Sci. Eng. A 243 (1998) 244-249.
DOI URL |
[20] |
T.T. Yao, K. Du, H.L. Wang, Z.Y. Huang, C.H. Li, L.L. Li, Y.L. Hao, R. Yang, H.Q. Ye, Acta Mater. 133 (2017) 21-29.
DOI URL |
[21] |
J.C. Jamieson, Science 140 (1963) 72-73.
PMID |
[22] |
J.H. Gao, Y.H. Huang, D.K. Guan, A.J. Knowles, L. Ma, D. Dye, W.M. Rainforth, Acta Mater. 152 (2018) 301-314.
DOI URL |
[23] |
J.H. Gao, A.J. Knowles, D.K. Guan, W.M. Rainforth, Scr. Mater. 162 (2018) 77-81.
DOI URL |
[24] | S.Y. Li, L. Zhang, Y.C. Zhang, Q. Yang, H.Q. Liu, X.Y. Zhang, Results Phys. 19 (2020) 103366. |
[25] |
Q. Luo, Y.L. Guo, B. Liu, Y.J. Feng, J.Y. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI |
[26] |
Y.P. Pang, D.K. Sun, Q.F. Gu, K. Chou, X.L. Wang, Q. Li, Cryst. Growth Des. 16 (2016) 2404-2415.
DOI URL |
[27] |
Q. Li, Y.F. Lu, Q. Luo, X.H. Yang, Y. Yang, J. Tan, Z.H. Dong, J. Dang, J.B. Li, Y. Chen, B. Jiang, S.H. Sun, F.S. Pan, J. Magnes. Alloy. 9 (2021) 1922-1941.
DOI URL |
[28] |
Q. Li, X. Lin, Q. Luo, Y.A. Chen, J.F. Wang, B. Jiang, F.S. Pan, Int. J. Miner. Metall. Mater. 29 (2022) 32-48.
DOI URL |
[29] | M. Morinaga, N. Yukawa, H. Adachi, J. Iron Steel Res. Inst. 71 (1985) 1441-1451. |
[30] |
M. Abdel-Hady, K. Hinoshita, M. Morinaga, Scr. Mater. 55 (2006) 477-480.
DOI URL |
[31] | Beausir J.-.J.F.B., ATEX-software, 2017. www.atex-software.eu. |
[32] |
Y. Ohmori, T. Ogo, K. Nakai, S. Kobayashi, Mater. Sci. Eng. A 312 (2001) 182-188.
DOI URL |
[33] |
M.J. Li, X.H. Min, K. Yao, F. Ye, Acta Mater. 164 (2018) 322-333.
DOI URL |
[34] |
S.K. Sikka, Y.K. Vohra, R. Chidambaram, Prog. Mater. Sci. 27 (1982) 245-310.
DOI URL |
[35] |
J.C. Williams, D.D. Fontaine, N.E. Paton, Metall. Trans. 4 (1973) 2701-2708.
DOI URL |
[36] | J.G. Yin, G. Chen, H.P. Tang, X.H. Qu, Int. J. Refract. Met. Hard Mat. 92 (2020) 105250. |
[37] |
H.H. Liu, M. Niinomi, M. Nakai, K. Cho, Acta Mater. 106 (2016) 162-170.
DOI URL |
[38] |
H.H. Liu, M. Niinomi, M. Nakai, J. Hieda, K. Cho, Scr. Mater. 82 (2014) 29-32.
DOI URL |
[39] |
S. Sadeghpour, S.M. Abbasi, M. Morakabati, A. Kisko, L.P. Karjalainen, D.A. Porter, Scr. Mater. 145 (2018) 104-108.
DOI URL |
[40] |
X.H. Min, X.J. Chen, S. Emura, K. Tsuchiya, Scr. Mater. 69 (2013) 393-396.
DOI URL |
[41] |
J.Y. Zhang, J.S. Li, G.F. Chen, L. Liu, Z. Chen, Q.K. Meng, B.L. Shen, F. Sun, F. Prima, Mater. Charact. 139 (2018) 421-427.
DOI URL |
[42] |
B.N. Qian, J.Y. Zhang, Y.Y. Fu, F. Sun, Y. Wu, J. Cheng, P. Vermaut, F. Prima, J. Mater. Sci. Technol. 65 (2020) 228-237.
DOI URL |
[43] |
H.Y. Zhan, G. Wang, M. Dargusch D. Kent, Acta Mater. 105 (2016) 104-113.
DOI URL |
[44] |
A. Paradkar, S.V. Kamat, A.K. Gogia, B.P. Kashyap, Mater. Sci. Eng. A 487 (2008) 14-19.
DOI URL |
[45] | K.J. Gilbert, Titanium Alloy Database, http://app.knovel.com/hotlink/toc/id:kpTAD00001/titanium-alloy-database/titanium-alloy-database, 2012. |
[46] |
L. Li, W. Mei, H. Xing, X.L. Wang, J. Sun, J. Alloy. Compd. 625 (2015) 188-192.
DOI URL |
[47] | M.A. Sutton, J.J. Orteu, H. Schreier, Image Correlation for Shape, Motion and Deformation Measurements:Basic Concepts, Theory and Applicants, Springer Science and Business Media, New York, 2009. |
[48] |
S. Hanada, O. Izumi, Metall. Trans. A 17 (1986) 1409-1420.
DOI URL |
[49] |
X.L. Wang, L. Li, W. Mei, W.L. Wang, J. Sun, Mater. Charact. 107 (2015) 149-155.
DOI URL |
[50] |
A. Melander, P. ˚ A. Persson, Acta Metall. 26 (1978) 267-278.
DOI URL |
[51] |
N.I. Medvedeva, Y.N. Gornostyrev, D.L. Novikov, O.N. Mryosav, A.J. Freeman, Acta Mater. 46 (1998) 3433-3442.
DOI URL |
[52] |
B.R. Sahu, Mater. Sci. Eng. B 49 (1997) 74-78.
DOI URL |
[53] |
K.M. Rahman, V.A. Vorontsov, D. Dye, Acta Mater. 89 (2015) 247-257.
DOI URL |
[54] | G.I. Taylor, Proc. R. Soc. Lond, A 145 (1934) 362-387. |
[55] | F. Jiang, S. Takaki, T. Masumura, R. Uemori, H. Zhang, T. Tsuchiyama, Int. J. Plast. 129 (2020) 102700. |
[56] |
Z.C. Cordero, B.E. Knight, C.A. Schuh, Int. Mater. Rev. 61 (2016) 495-512.
DOI URL |
[57] | L. Kubin, B. Devincre, T. Hoc, Mater. Sci. Eng. A 483 (2008) 19-24. |
[58] |
J.M. Rosenberg, H.R. Piehler, Metall. Trans. 2 (1971) 257-259.
DOI URL |
[59] |
G. Zhao, X. Xu, D. Dye, P.E.J. Rivera-Díaz-Del-Castillo, Acta Mater. 183 (2020) 155-164.
DOI URL |
[60] | O. Bouaziz, S. Allain, C. Scott, Scr. Mater. 58 (2008) 4 84-4 87. |
[61] |
L. Remy, Acta Metall. 26 (1978) 443-451.
DOI URL |
[1] | J. Ding, A. Inoue, F.L. Kong, S.L. Zhu, Y.L. Pu, E. Shalaan, A.A. Al-Ghamdi, A.L. Greer. Novel heating-and deformation-induced phase transitions and mechanical properties for multicomponent Zr50M50, Zr50(M,Ag)50 and Zr50(M,Pd)50 (M = Fe,Co,Ni,Cu) amorphous alloys [J]. J. Mater. Sci. Technol., 2022, 104(0): 109-118. |
[2] | Zhaoxin Du, Qiwei He, Ruirun Chen, Fei Liu, Jingyong Zhang, Fei Yang, Xueping Zhao, Xiaoming Cui, Jun Cheng. Rolling reduction -dependent deformation mechanisms and tensile properties in a β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 104(0): 183-193. |
[3] | Hongge Li, Wenjie Zhao, Tian Chen, Yongjiang Huang, Jianfei Sun, Ping Zhu, Yunzhuo Lu, Alfonso H.W. Ngan, Daqing Wei, Qing Du, Yongchun Zou. Beneficial effects of deep cryogenic treatment on mechanical properties of additively manufactured high entropy alloy: cyclic vs single cryogenic cooling [J]. J. Mater. Sci. Technol., 2022, 115(0): 40-51. |
[4] | Qimin Shi, Shoufeng Yang, Yi Sun, Yifei Gu, Ben Mercelis, Shengping Zhong, Bart Van Meerbeek, Constantinus Politis. In-situ formation of Ti-Mo biomaterials by selective laser melting of Ti/Mo and Ti/Mo2C powder mixtures: A comparative study on microstructure, mechanical and wear performance, and thermal mechanisms [J]. J. Mater. Sci. Technol., 2022, 115(0): 81-96. |
[5] | W. Zheng, J.M. Wu, S. Chen, K.B. Yu, J. Zhang, Y.S. Shi. Improved mechanical properties of SiC fiber reinforced silica-based ceramic cores fabricated by stereolithography [J]. J. Mater. Sci. Technol., 2022, 116(0): 161-168. |
[6] | H.Z. Lu, L.H. Liu, , X. Luo, C.H. Song, Z. Wang, J. Wang, Y.D. Su, Y.F. Ding, L.C. Zhang, Y.Y. Li. Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti2Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 101(0): 205-216. |
[7] | MengCheng Deng, Shang Sui, Bo Yao, Liang Ma, Xin Lin, Jing Chen. Microstructure and room-temperature tensile property of Ti-5.7Al-4.0Sn-3.5Zr-0.4Mo-0.4Si-0.4Nb-1.0Ta-0.05C with near equiaxed β grain fabricated by laser directed energy deposition technique [J]. J. Mater. Sci. Technol., 2022, 101(0): 308-320. |
[8] | Yingmei Tan, Ruirun Chen, Hongze Fang, Yangli Liu, Hongzhi Cui, Yanqing Su, Jingjie Guo, Hengzhi Fu. Enhanced strength and ductility in Ti46Al4Nb1Mo alloys via boron addition [J]. J. Mater. Sci. Technol., 2022, 102(0): 16-23. |
[9] | Wenjun Lu, Jianjun Li. Synergetic deformation mechanism in hierarchical twinned high-entropy alloys [J]. J. Mater. Sci. Technol., 2022, 102(0): 80-88. |
[10] | Xu Liu, Lin Song, Andreas Stark, Uwe Lorenz, Zhanbing He, Junpin Lin, Florian Pyczak, Tiebang Zhang. Deformation and phase transformation behaviors of a high Nb-containing TiAl alloy compressed at intermediate temperatures [J]. J. Mater. Sci. Technol., 2022, 102(0): 89-96. |
[11] | Jingbo Gao, Yuting Jin, Yongqiang Fan, Dake Xu, Lei Meng, Cong Wang, Yuanping Yu, Deliang Zhang, Fuhui Wang. Fabricating antibacterial CoCrCuFeNi high-entropy alloy via selective laser melting and in-situ alloying [J]. J. Mater. Sci. Technol., 2022, 102(0): 159-165. |
[12] | Peng Chen, Jin Su, Haoze Wang, Lei Yang, Haosong Cai, Maoyuan Li, Zhaoqing Li, Jie Liu, Shifeng Wen, Yan Zhou, Chunze Yan, Yusheng Shi. Mechanical properties and microstructure characteristics of lattice-surfaced PEEK cage fabricated by high-temperature laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 125(0): 105-117. |
[13] | Kesong Miao, Meng Huang, Yiping Xia, Hao Wu, Qing Liu, Guohua Fan. Unexpected de-twinning of strongly-textured Ti mediated by local stress [J]. J. Mater. Sci. Technol., 2022, 125(0): 231-237. |
[14] | X.M. Mei, Q.S. Mei, J.Y. Li, C.L. Li, L. Wan, F. Chen, Z.H. Chen, T. Xu, Y.C. Wang, Y.Y. Tan. Solid-state alloying of Al-Mg alloys by accumulative roll-bonding: Microstructure and properties [J]. J. Mater. Sci. Technol., 2022, 125(0): 238-251. |
[15] | Dongxu Li, Guoying Zhang, Gang Lu, Yujie Liu, Jianjun Wang, Chunming Liu. Precipitation of Ti2Al phases at lamellar interfaces in a high-Nb-containing TiAl alloy during thermal exposure [J]. J. Mater. Sci. Technol., 2022, 126(0): 132-140. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||