J. Mater. Sci. Technol. ›› 2022, Vol. 125: 231-237.DOI: 10.1016/j.jmst.2022.02.039
• Letter • Previous Articles Next Articles
Kesong Miaoa,b, Meng Huangb, Yiping Xiab, Hao Wua, Qing Liua, Guohua Fana,*()
Revised:
2022-02-26
Published:
2022-10-14
Online:
2022-10-14
Contact:
Guohua Fan
About author:
* E-mail address: ghfan@njtech.edu.cn (G. Fan)Kesong Miao, Meng Huang, Yiping Xia, Hao Wu, Qing Liu, Guohua Fan. Unexpected de-twinning of strongly-textured Ti mediated by local stress[J]. J. Mater. Sci. Technol., 2022, 125: 231-237.
Layer | Coefficient of thermal expansion(10-6 K-1) | Poisson's ratio | Elastic modulus(GPa) | Yield strength(MPa) |
---|---|---|---|---|
Ti | 23 | 0.32 | 102 | 275 |
Al | 10.8 | 0.34 | 70 | 25 |
Table 1. Mechanical properties of Ti and Al.
Layer | Coefficient of thermal expansion(10-6 K-1) | Poisson's ratio | Elastic modulus(GPa) | Yield strength(MPa) |
---|---|---|---|---|
Ti | 23 | 0.32 | 102 | 275 |
Al | 10.8 | 0.34 | 70 | 25 |
Fig. 1. Microstructure of Ti-Al layered metal. The normal direction, transverse direction and rolling direction are hereafter denoted as ND, TD and RD, respectively.
Fig. 2. In-situ EBSD mappings of Ti-Al layered metal. The IPF mappings of Ti layer upon plastic strain of (a) 0%, (b) 1%, (c) 3%, (d) 10%. De-twinning was prevalent in Ti-Al layered metal during the uniaxial tension, as indicated by white arrows. The grain boundary misorientation mappings of Ti-Al layered metal upon plastic strain of (e) 0%, (f) 1%, (g) 3%, (h) 10%. De-twining corresponds to grain boundary misorientation of 84.7° ($\left\{ 10\bar{1}2 \right\}\langle 10\bar{1}\bar{1}\rangle $ extension twinning) as indicated by white arrows.
Fig. 3. In-situ microstructure evolution of Ti-Al layered metal upon plastic strain of (a) 0%, (b) 1%, (c) 3%, (d) 10%. The left column shows (0001) pole figures of Ti in Ti-Al layered metal at various strains. The right column showed the statistical distributions of misorientation angle for Ti in Ti-Al layered metal at various strains. The misorientation angles corresponding to $\left\{ 10\bar{1}2 \right\}\langle 10\bar{1}\bar{1}\rangle $ extension twinning, $\left\{ 11\bar{2}2 \right\}\langle 11\bar{2}\bar{3}\rangle $ contraction twinning, and $\left\{ 10\bar{1}1 \right\}\langle 10\bar{1}2\rangle $ contraction twinning were marked by pentagrams, squares, and circles, respectively.
Fig. 4. Twinning boundary length connected with $\left\{ 10\bar{1}2 \right\}\langle 10\bar{1}\bar{1}\rangle $ extension twinning and $\left\{ 11\bar{2}2 \right\}\langle 11\bar{2}\bar{3}\rangle $ contraction twinning of Ti in Ti-Al layered metal as a function of strain. The $\left\{ 10\bar{1}2 \right\}\langle 10\bar{1}\bar{1}\rangle $ extension twinning continued to de-twinning, and the de-twinning rate decreased with the increase of strain, while $\left\{ 11\bar{2}2 \right\}\langle 11\bar{2}\bar{3}\rangle $ contraction twinning only activated on the initial deformation stage.
Fig. 5. Inverse pole figures of Ti in Ti-Al layered metal along (a) RD, (b) ND, (c) TD. All Ti grains are indicated by small celadon circles, while the de-twinning twins and de-twinning parents were marked by red and navy circles, respectively. (d) Misorientation angle between the c-axes of de-twinned twins/parents and the ND. Misorientation angles exceeding 50° were prevalent for de-twinned twins, while the c-axes of de-twinned parents had a small angle with respect to the ND.
Fig. 6. In-situ de-twinning analysis via local Schmid factor. EBSD mappings at plastic strains of (a, d) 0%, (b, e) 10%. (c, f) Local Schmid factor for de-twinning of Twin 1–5 in (a) and (d) that takes ${{\sigma }_{\text{ND}}}$ into account.
Empty Cell | Deformation mechanism | | | |
---|---|---|---|---|
Twin 1 | De-twinning | 0.073 | -0.082 | 0.009 |
Contraction twinning of corresponding parent grain | 0.106 | -0.104 | 0.014 | |
Twin 2 Twin 3 | De-twinning | -0.002 | -0.026 | 0.012 |
Contraction twinning of corresponding parent grain | 0.107 | -0.074 | 0.017 | |
Twin 4 Twin 5 | De-twinning | 0.060 | -0.054 | 0.009 |
Contraction twinning of corresponding parent grain | 0.107 | -0.074 | 0.017 |
Table 2. Displacement gradient tensors for Twin 1-5.
Empty Cell | Deformation mechanism | | | |
---|---|---|---|---|
Twin 1 | De-twinning | 0.073 | -0.082 | 0.009 |
Contraction twinning of corresponding parent grain | 0.106 | -0.104 | 0.014 | |
Twin 2 Twin 3 | De-twinning | -0.002 | -0.026 | 0.012 |
Contraction twinning of corresponding parent grain | 0.107 | -0.074 | 0.017 | |
Twin 4 Twin 5 | De-twinning | 0.060 | -0.054 | 0.009 |
Contraction twinning of corresponding parent grain | 0.107 | -0.074 | 0.017 |
[1] |
M.J. Cordill, T. Jörg, D.M. Többens, C. Mitterer, Scr. Mater. 202 (2021) 113994.
DOI URL |
[2] |
J. Li, W. Lu, J. Gibson, S. Zhang, S. Korte-Kerzel, D. Raabe, Scr. Mater. 179 (2020) 30-35.
DOI URL |
[3] |
H. Wu, Z. Liu, H. Hu, Q. Li, J. Li, J. Wu, Z. Wang, Metall. Mater. Trans. A 50 (2019) 5561-5566.
DOI URL |
[4] |
Y. Wang, Y. Wei, Z. Zhao, Z. Lin, F. Guo, Q. Cheng, C. Huang, Y. Zhu, Scr. Mater. 207 (2022) 114310.
DOI URL |
[5] |
J. Zhao, M. Zaiser, X. Lu, B. Zhang, C. Huang, G. Kang, X. Zhang, Int. J. Plast. 145 (2021) 103063.
DOI URL |
[6] |
C.X. Huang, Y.F. Wang, X.L. Ma, S. Yin, H.W. Höppel, M. Göken, X.L. Wu, H.J. Gao, Y.T. Zhu, Mater. Today 21 (2018) 713-719.
DOI URL |
[7] |
F. Liang, H.F. Tan, B. Zhang, G.P. Zhang, Scr. Mater. 134 (2017) 28-32.
DOI URL |
[8] |
H.S. Liu, B. Zhang, G.P. Zhang, Scr. Mater. 65 (2011) 891-894.
DOI URL |
[9] |
H.S. Liu, B. Zhang, G.P. Zhang, Scr. Mater. 64 (2011) 13-16.
DOI URL |
[10] |
H. Yu, A.K. Tieu, C. Lu, X. Liu, A. Godbole, H. Li, C. Kong, Q. Qin, Sci. Rep. 4 (2014) 5017.
DOI URL |
[11] | X. Wu, M. Yang, F. Yuan, G. Wu, Y. Wei, X. Huang, Y. Zhu, Proc. Natl. Acad. Sci. 112 (2015) 14501-14505. |
[12] |
D. Li, G. Fan, X. Huang, D. Jensen, K. Miao, C. Xu, L. Geng, Y. Zhang, T. Yu, Acta Mater. 206 (2021) 116627.
DOI URL |
[13] |
X. Zhang, Y. Yu, B. Liu, Y. Zhao, J. Ren, Y. Yan, R. Cao, J. Chen, J. Alloy Compd. 783 (2019) 55-65.
DOI URL |
[14] |
W. Chen, W. He, Z. Chen, B. Jiang, Q. Liu, Int. J. Plast. 133 (2020) 102806.
DOI URL |
[15] |
Y. Du, G. Fan, T. Yu, N. Hansen, L. Geng, X. Huang, Mater. Sci. Eng. A 673 (2016) 572-580.
DOI URL |
[16] |
H. Wu, G. Fan, Prog. Mater. Sci. 113 (2020) 100675.
DOI URL |
[17] |
M. Huang, G.H. Fan, L. Geng, G.J. Cao, Y. Du, H. Wu, T.T. Zhang, H.J. Kang, T. M. Wang, G.H. Du, H.L. Xie, Sci. Rep. 6 (2016) 38461.
DOI PMID |
[18] |
M. Huang, C. Xu, G.H. Fan, E. Maawad, W.M. Gan, L. Geng, F.X. Lin, G.Z. Tang, H. Wu, Y. Du, D.Y. Li, K.S. Miao, T.T. Zhang, X.S. Yang, Y.P. Xia, G.J. Cao, H.J. Kang, T.M. Wang, T.Q. Xiao, H.L. Xie. Acta Mater. 153 (2018) 235-249.
DOI URL |
[19] |
T. Yu, Y. Du, G. Fan, R. Xu, R. Barabash, N. Hansen, X. Huang, Y. Zhang. Acta Mater. 202 (2021) 149-158.
DOI URL |
[20] | Y. Peng, K. Miao, W. Sun, C. Liu, H. Wu, L. Geng, G. Fan. Acta Metall. Sin. Engl. Lett. 35 (2021) 3-24. |
[21] |
A. Akhtar. Metall. Trans. A 6 (1975) 1105.
DOI URL |
[22] |
M.H. Yoo, J.K. Lee. Philos. Mag. A 63 (1991) 987-1000.
DOI URL |
[23] | R.E. Reed-Hill, J.P. Hirth, H.C. Rogers. Deformation Twinning, Gordon and Breach, New York, 1964. |
[24] |
S.R. Kalidindi, A.A. Salem, R.D. Doherty, Adv. Eng. Mater. 5 (2003) 229-232.
DOI URL |
[25] |
M. Wronski, M. Arul Kumar, L. Capolungo, R.J. McCabe, K. Wierzbanowski, C. N. Tomé. Mater. Sci. Eng. A 724 (2018) 289-297.
DOI URL |
[26] | X.X. Guan, L. Lu, S.N. Luo, D. Fan. Mater. Sci. Eng. A 12 (2021) 141073. |
[27] | E.A. Anderson, D.C. Jillson, S.R. Dunbar. Trans. AIME 197 (1953) 1191-1197. |
[28] |
P.G. Partridge. Metall. Rev. 12 (1967) 169-194.
DOI URL |
[29] |
S.V. Zherebtsov, G.S. Dyakonov, A.A. Salem, V.I. Sokolenko, G.A. Salishchev, S. L. Semiatin, Acta Mater. 61 (2013) 1167-1178.
DOI URL |
[30] |
Z. Zeng, S. Jonsson, H.J. Roven. Acta Mater. 57 (2009) 5822-5833.
DOI URL |
[31] |
F. Xu, X. Zhang, H. Ni, Q. Liu. Mater. Sci. Eng. A 541 (2012) 190-195.
DOI URL |
[32] |
W. Tirry, M. Nixon, O. Cazacu, F. Coghe, L. Rabet. Scr. Mater. 64 (2011) 840-843.
DOI URL |
[33] | X. Hu, L. Chai, Y. Zhu, H. Wu, J. Luo, L. Tian, Q. Sun, Y. Li, J. Cheng. Mater. Today Commun. 29 (2021) 102989. |
[34] |
J. Dai, L. Zeng, Z. Li, L. Chai, Z. Zheng, H. Wu, K.L. Murty, N. Guo, Sci. China Technol. Sci. 62 (2019) 1968-1975.
DOI URL |
[35] |
R.J. McCabe, M.A. Kumar, W. Liu, C.N. Tomé, L. Capolungo. Acta Mater. 221 (2021) 117359.
DOI URL |
[36] |
T.N. Lam, S.Y. Lee, N.T. Tsou, H.S. Chou, B.H. Lai, Y.J. Chang, R. Feng, T. Kawasaki, S. Harjo, P.K. Liaw, A.C. Yeh, M.J. Li, R.F. Cai, S.C. Lo, E.W. Huang. Acta Mater. 201 (2020) 412-424.
DOI URL |
[37] |
Y. Cheng, Y. Fu, Y. Xin, G. Chen, P. Wu, X. Huang, Q. Liu. Int. J. Plast. 132 (2020) 102754.
DOI URL |
[38] |
B. Zhou, L. Wang, P. Jin, H. Jia, H.J. Roven, X. Zeng, Y. Li. Int. J. Plast. 128 (2020) 102669.
DOI URL |
[39] |
Y. Guo, J. Schwiedrzik, J. Michler, X. Maeder. Acta Mater. 120 (2016) 292-301.
DOI URL |
[40] |
H. Qin, J.J. Jonas, H. Yu, N. Brodusch, R. Gauvin, X. Zhang. Acta Mater. 71 (2014) 293-305.
DOI URL |
[41] |
S. Xu, M. Gong, C. Schuman, J.S. Lecomte, X. Xie, J. Wang. Acta Mater. 132 (2017) 57-68.
DOI URL |
[42] |
S. Xu, P. Zhou, G. Liu, D. Xiao, M. Gong, J. Wang. Acta Mater. 165 (2019) 547-560.
DOI URL |
[43] |
Y. Guo, H. Abdolvand, T.B. Britton, A.J. Wilkinson. Acta Mater. 126 (2017) 221-235.
DOI URL |
[44] |
F. Bachmann, R. Hielscher, H. Schaeben. Ultramicroscopy 111 (2011) 1720-1733.
DOI PMID |
[45] |
W. Pantleon. Scr. Mater. 58 (2008) 994-997.
DOI URL |
[46] |
H. Wang, P.D. Wu, J. Wang, C.N. Tomé. Int. J. Plast. 49 (2013) 36-52.
DOI URL |
[47] |
C. Ma, H. Wang, T. Hama, X. Guo, X. Mao, J. Wang, P. Wu. Int. J. Plast. 121 (2019) 261-279.
DOI URL |
[48] |
B.D. Bishoyi, R.K. Sabat, J. Sahu, S.K. Sahoo. Mater. Sci. Eng. A 703 (2017) 399-412.
DOI URL |
[49] |
Y. Pang, D. Sun, Q. Gu, K.C. Chou, X. Wang, Q. Li. Cryst. Growth Des. 16 (2016) 2404-2415.
DOI URL |
[50] |
Q. Li, X. Lin, Q. Luo, Y.A. Chen, J. Wang, B. Jiang, F. Pan. Int. J. Miner. Metall. Mater. 29 (2022) 32-48.
DOI URL |
[51] |
Q. Li, Y. Lu, Q. Luo, X. Yang, Y. Yang, J. Tan, Z. Dong, J. Dang, J. Li, Y. Chen, B. Jiang, S. Sun, F. Pan. J. Magnes. Alloy 9 (2021) 1922-1941.
DOI URL |
[52] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou. J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI |
[53] | E. Schmid, in: Proceedings of the First International Congress for Applied Me- chanics, Delft, 1924. |
[54] | E. Schmid, W. Boas. Kristallplastizität Mit Besonderer Berücksichtigung der Metalle, Springer, Berlin, 1935. |
[55] |
D. Xia, X. Chen, G. Huang, B. Jiang, A. Tang, H. Yang, S. Gavras, Y. Huang, N. Hort, F. Pan. Scr. Mater. 171 (2019) 31-35.
DOI URL |
[56] |
D. Xia, G. Huang, Q. Deng, B. Jiang, S. Liu, F. Pan. Mater. Sci. Eng. A 715 (2018) 379-388.
DOI URL |
[57] |
S. Jiang, R.L. Peng, Z. Heged ˝us, T. Gnäupel-Herold, J.J. Moverare, U. Lienert, F. Fang, X. Zhao, L. Zuo, N. Jia. Acta Mater. 205 (2021) 116546.
DOI URL |
[58] |
S. Wang, Y. Zhang, C. Schuman, J.S. Lecomte, X. Zhao, L. Zuo, M.-.J. Philippe, C. Esling. Acta Mater. 82 (2015) 424-436.
DOI URL |
[59] |
J.L.W. Warwick, N.G. Jones, K.M. Rahman, D. Dye, Acta Mater. 60 (2012) 6720-6731.
DOI URL |
[60] |
L. Wang, J. Lind, H. Phukan, P. Kenesei, J.S. Park, R.M. Suter, A.J. Beaudoin, T.R. Bieler. Scr. Mater. 92 (2014) 35-38.
DOI URL |
[61] |
L. Wu, S.R. Agnew, D.W. Brown, G.M. Stoica, B. Clausen, A. Jain, D.E. Fielden, P.K. Liaw. Acta Mater. 56 (2008) 3699-3707.
DOI URL |
[62] |
S. Xu, C. Schuman, J.S. Lecomte. Scr. Mater. 116 (2016) 152-156.
DOI URL |
[63] |
S. Jiang, R.L. Peng, K. Máthis, H.L. Yan, G. Farkas, Z. Hegedues, U. Lienert, J. Moverare, X. Zhao, L. Zuo, N. Jia, Y.D. Wang. J. Mater. Sci. Technol. 110 (2022) 260-268.
DOI URL |
[1] | Luxin Liang, Qianli Huang, Hong Wu, Hao He, Guanghua Lei, Dapeng Zhao, Kun Zhou. Engineering nano-structures with controllable dimensional features on micro-topographical titanium surfaces to modulate the activation degree of M1 macrophages and their osteogenic potential [J]. J. Mater. Sci. Technol., 2022, 96(0): 167-178. |
[2] | Bijun Xie, Zhenxiang Yu, Haiyang Jiang, Bin Xu, Chunyang Wang, Jianyang Zhang, Mingyue Sun, Dianzhong Li, Yiyi Li. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding [J]. J. Mater. Sci. Technol., 2022, 96(0): 199-211. |
[3] | Q. Yan, B. Chen, L. Cao, K.Y. Liu, S. Li, L. Jia, K. Kondoh, J.S. Li. Improved mechanical properties in titanium matrix composites reinforced with quasi-continuously networked graphene nanosheets and in-situ formed carbides [J]. J. Mater. Sci. Technol., 2022, 96(0): 85-93. |
[4] | Gen Li, Chengqi Sun. High-temperature failure mechanism and defect sensitivity of TC17 titanium alloy in high cycle fatigue [J]. J. Mater. Sci. Technol., 2022, 122(0): 128-140. |
[5] | Yonghua Sun, Yuyu Zhao, He Zhang, Youjie Rong, Runhua Yao, Yi Zhang, Xiaohong Yao, Ruiqiang Hang. Corrosion behavior, antibacterial ability, and osteogenic activity of Zn-incorporated Ni-Ti-O nanopore layers on NiTi alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 69-78. |
[6] | Min Cheng, Zhengguan Lu, Jie Wu, Ruipeng Guo, Junwei Qiao, Lei Xu, Rui Yang. Effect of thermal induced porosity on high-cycle fatigue and very high-cycle fatigue behaviors of hot-isostatic-pressed Ti-6Al-4V powder components [J]. J. Mater. Sci. Technol., 2022, 98(0): 177-185. |
[7] | Yanxi Li, Pengfei Gao, Jingyue Yu, Shuo Jin, Shuqun Chen, Mei Zhan. Mesoscale deformation mechanisms in relation with slip and grain boundary sliding in TA15 titanium alloy during tensile deformation [J]. J. Mater. Sci. Technol., 2022, 98(0): 72-86. |
[8] | Xiang Peng, Wencai Liu, Guohua Wu, Hao Ji, Wenjiang Ding. Plastic deformation and heat treatment of Mg-Li alloys: a review [J]. J. Mater. Sci. Technol., 2022, 99(0): 193-206. |
[9] | Qian Wang, Shun Xu, Yajun Zhao, Jean-Sébastien Lecomte, Christophe Schuman. Multi-dimensional morphology of hydride diffusion layer and associated sequential twinning in commercial pure titanium [J]. J. Mater. Sci. Technol., 2022, 103(0): 105-112. |
[10] | Bin Zhu, Nathanael Leung, Winfried Kockelmann, Andrew J. London, Michael Gorley, Mark J. Whiting, Yiqiang Wang, Tan Sui. Revealing the residual stress distribution in laser welded Eurofer97 steel by neutron diffraction and Bragg edge imaging [J]. J. Mater. Sci. Technol., 2022, 114(0): 249-260. |
[11] | Yue Wang, Siyuan Yang, Ting Zhou, Long Hou, Lansong Ba, Yves Fautrelle, Zhongming Ren, Yanyan Zhu, Zongbin Li, Xi Li. Microstructure evolution and mechanical behavior of Ni-rich Ni-Mn-Ga alloys under compressive and tensile stresses [J]. J. Mater. Sci. Technol., 2022, 97(0): 113-122. |
[12] | Yang Liu, Samuel C.V. Lim, Chen Ding, Aijun Huang, Matthew Weyland. Unravelling the competitive effect of microstructural features on the fracture toughness and tensile properties of near beta titanium alloys [J]. J. Mater. Sci. Technol., 2022, 97(0): 101-112. |
[13] | Ruifeng Dong, Xiaoyang Zhang, Chenhui Li, Yuhong Zhao, Jinzhong Tian, Li Wu, Hua Hou. Correlation between the mechanical properties and the 〈110〉 texture in a hot-rolled near β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 165-168. |
[14] | Lixia Ma, Min Wan, Weidong Li, Jie Shao, Xiaoning Han, Jichun Zhang. On the superplastic deformation mechanisms of near-α TNW700 titanium alloy [J]. J. Mater. Sci. Technol., 2022, 108(0): 173-185. |
[15] | Juan Li, Yaqun Xu, Wenlong Xiao, Chaoli Ma, Xu Huang. Development of Ti-Al-Ta-Nb-(Re) near-α high temperature titanium alloy: Microstructure, thermal stability and mechanical properties [J]. J. Mater. Sci. Technol., 2022, 109(0): 1-11. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||