J. Mater. Sci. Technol. ›› 2022, Vol. 122: 128-140.DOI: 10.1016/j.jmst.2022.01.010
• Research Article • Previous Articles Next Articles
Received:
2021-12-14
Revised:
2022-01-04
Accepted:
2022-01-04
Published:
2022-09-20
Online:
2022-03-20
Contact:
Chengqi Sun
About author:
* E-mail address: scq@lnm.imech.ac.cn (C. Sun).Gen Li, Chengqi Sun. High-temperature failure mechanism and defect sensitivity of TC17 titanium alloy in high cycle fatigue[J]. J. Mater. Sci. Technol., 2022, 122: 128-140.
Fig. 1. EBSD microstructural characterization of TC17 titanium alloy. (a, b) Band contrast map and IPF. (c, d) Enlarged view of box 1 and 2 in (b), respectively, showing α cluster and anisotropic α grains. Inset in (c) the color legend for IPF. (e) Phase map (upper part) and IPF (lower part) near the defect. (f) Enlarged view of phase map (upper part) and IPF (lower part) of box 3 in (e).
Temperature (°C) | Elastic modulus (GPa) | Yield strength (MPa) | Tensile strength (MPa) | Elongation to failure (%) |
---|---|---|---|---|
25 | 118 | 1047 | 1141 | 11.9 |
200 | 112 | 920 | 1054 | 11.3 |
400 | 103 | 735 | 912 | 12.1 |
Table 1. Mechanical properties of TC17 alloy.
Temperature (°C) | Elastic modulus (GPa) | Yield strength (MPa) | Tensile strength (MPa) | Elongation to failure (%) |
---|---|---|---|---|
25 | 118 | 1047 | 1141 | 11.9 |
200 | 112 | 920 | 1054 | 11.3 |
400 | 103 | 735 | 912 | 12.1 |
Fig. 2. Test results: (a) S-N data of smooth specimens tested at 25 °C, 200 °C and 400 °C. (b) Variation of fatigue strengths and tensile strengths of smooth specimens with temperatures. (c)-(e) S-N data of notched specimens at 25 °C, 200 °C and 400 °C, respectively. (f) Variation of fatigue strengths of smooth and notched specimens with temperatures.
Tests | Temperature (°C) | σts (MPa) | σfs (MPa) | σfsσts |
---|---|---|---|---|
Current | 25 | 1141 | 629 | 0.55 |
200 | 1054 | 530 | 0.50 | |
400 | 912 | 416 | 0.46 | |
Liu et al [4] | 25* | 1078 | 530 | 0.49 |
400 | 853 | 450 | 0.53 |
Table 2. Tensile strength and fatigue strength of the TC17 alloys.
Tests | Temperature (°C) | σts (MPa) | σfs (MPa) | σfsσts |
---|---|---|---|---|
Current | 25 | 1141 | 629 | 0.55 |
200 | 1054 | 530 | 0.50 | |
400 | 912 | 416 | 0.46 | |
Liu et al [4] | 25* | 1078 | 530 | 0.49 |
400 | 853 | 450 | 0.53 |
Fig. 3 Fracture surfaces of smooth specimens at different temperatures. (a1) Surface crack initiation at 25 °C (σa=650 MPa, Nf=3.9 × 104 cycles). (a2) Surface crack initiation with facet. (a3) An enlarged view of the facet in (a2). (b1) Internal crack initiation at 25 °C (σa=620 MPa, Nf=6.0 × 106 cycles). (b2) Internal crack initiation with rough area. (b3) An enlarged view of the rough area in (b2). (c1) Multiple surface crack initiations by oxide intrusion at 200 °C (σa=650 MPa, Nf=2.7 × 104 cycles). (c2, c3) Close-ups of the upper and the right crack initiation regions in (c1), respectively. (d1) Surface crack initiation by oxide shedding at 400 °C (σa=520 MPa, Nf=7.6 × 105 cycles). (d2) An enlarged view of crack initiation region in (d1). (d3, d4) Close-ups of the oxide shedding regions in (d2). (e1) Internal crack initiation at 400 °C (σa=520 MPa, Nf=1.0 × 106 cycles). (e2) Internal crack initiation with rough area. (e3) An enlarged view of the rough area in (e2).
Fig. 4. SEM observation of fracture surface of notched specimens at different temperatures. (a1) The whole fracture surface at 25 °C (σa=105 MPa, Nf=2.6 × 105 cycles). (a2) A close-up of the coarse surface in black box in (a1). (a3) A close-up of crack initiation zone at notch root in (a1). (b1) The whole fracture surface at 200 °C (σa=95 MPa, Nf=4.5 × 105 cycles). (b2) and (b3) Close-ups of crack initiation zone at notch root in (b1). (c1) The whole fracture surface at 400 °C (σa=107 MPa, N=8.7 × 104 cycles). (c2, c3) Close-ups of crack initiation zone at notch root in (c1).
Fig. 5. Variation of hardness of the specimens at different temperatures. (a) Hardness values of specimen surface versus holding time. (b) Hardness versus depth from surface on the cross section of run-out specimens at different temperatures. Inset in (a) and (b) the sketches for the hardness tests.
Fig. 6. Analysis of ORL by EDS. (a1) SEM image of a section on the specimen tested at 200 °C (σa=540 MPa, Nf=8.4 × 105 cycles). (b1) SEM image of a section on the specimen tested at 400 °C (σa=460 MPa, Nf=6.2 × 105 cycles). (a2) and (b2) EDS maps of the selected zones in (a1) and (b1), respectively.
Fig. 7. Observations for the rough area of the sample tested at 25 °C (σa=620 MPa, Nf=6.0 × 106 cycles). (a) SEM image of the rough area. (b) SEM image of the sectional plane at position b in (a). (c-e) IPF, phase map and TEM image of the sectional plane at position c in (a). (f) Dark field image and SAD of box 1 in (e); (g) An enlarged image of box 2 in (e).
Fig. 8. Observations for the rough area of the sample tested at 400 °C (σa=520 MPa, Nf=1.0 × 106 cycles). (a) SEM image of the rough area. (b) SEM image of the sectional plane at position b in (a). (c-e) IPF, phase map and TEM image of the sectional sheet at position c in (a). (f) Dark field image and SAD of box 1 in (e). (g) An enlarged image of box 2 in (e).
Fig. 9. Competition mechanism between surface and internal initiations at 400 °C. (a1) and (a2) Section view and side view of surface crack initiation by brittle fracture of oxygen-rich site, respectively. (b1) and (b2) Section view and side view of surface crack initiation by oxide shedding, respectively. (c1) and (c2) Section view and side view of internal crack initiation with rough area, respectively.
Fig. 10. Cracks below the notch defect. (a) and (b) Band contrast map and IPF of a specimen with the notch depth of 0.5 mm tested at 25 °C. Inset in (b) the color legend of IPF. (c) and (d) Band contrast map and IPF of a specimen with the notch depth of 0.2 mm tested at 200 °C. Inset in (a) and (c) SEM images of cracks in (a) and (c), respectively. (e) SEM image of a specimen with the notch depth of 0.5 mm tested at 400 °C. (f) An enlarged view of yellow box in (e).
Fig. 11. Variation of fatigue strength with defect size. Hollow symbols and solid symbols in the figure represent experimental fatigue strengths of smooth specimens and notched specimens, respectively.
Depth (mm) | |
---|---|
0.05 | 182 |
0.2 | 513 |
0.5 | 1011 |
Table 3. The notch depth and defect size $\sqrt{area}$ of notched specimens.
Depth (mm) | |
---|---|
0.05 | 182 |
0.2 | 513 |
0.5 | 1011 |
[1] |
S. Hardt, H. Maier, H. Christ, Int. J.Fatigue 21 (1999) 779-789.
DOI URL |
[2] | D.P. Satko, J.B. Shaffer, J.S. Tiley, S.L. Semiatin, A.L. Pilchak, S.R. Kalidindi, Y. Kosaka, M.G. Glavicic, A.A. Salem, Acta Mater 107 (2016) 377-389. |
[3] |
K. Tokaji,Scr. Mater. 54 (2006) 2143-2148.
DOI URL |
[4] | F. Liu, Y. Chen, C. He, L. Li, C. Wang, H. Li, H. Zhang, Q. Wang, Y. Liu,Mater. Sci. Eng. A 811 (2021) 141049. |
[5] | H. Christ, F. Fischer, H. Maier,Mater. Sci. Eng. A 319 (2001) 625-630. |
[6] |
G. Biallas, M. Essert, H. Maier, Int. J.Fatigue 27 (2005) 1485-1493.
DOI URL |
[7] |
D. Eylon, M. Rosenblum,Metall. Trans. A 13 (1982) 322-324.
DOI URL |
[8] |
W. Plumbridge,Fatigue Fract. Eng. Mater. Struct. 10 (1987) 385-398.
DOI URL |
[9] | G. Malakondaiah, T. Nicholas,Metall. Mater. Trans. A 27 (8) (1996) 2239. |
[10] |
V. Recina, B. Karlsson,Mater. Sci. Eng. A 262 (1999) 70-81.
DOI URL |
[11] |
V. Recina,Mater. Sci. Technol. 16 (2000) 333-340.
DOI URL |
[12] |
J. Cao, F. Bai, Z. Li,Mater. Sci. Eng. A 424 (2006) 47-52.
DOI URL |
[13] |
F. Appel, T.K. Heckel, H. Christ, Int. J.Fatigue 32 (2010) 792-798.
DOI URL |
[14] |
I. Altenberger, R.K. Nalla, Y. Sano, L. Wagner, R.O. Ritchie, Int. J.Fatigue 44 (2012) 292-302.
DOI URL |
[15] |
P. Gallo, F. Berto, P. Lazzarin,Theor. Appl. Fract. Mech. 76 (2015) 27-34.
DOI URL |
[16] |
H. Ghonem, Int. J.Fatigue 32 (2010) 1448-1460.
DOI URL |
[17] | G. Qian, Z. Jian, X. Pan, F. Berto, Int. J.Fatigue 133 (2020) 105424. |
[18] |
Y. Hong, C. Sun,Theor. Appl. Fract. Mech. 92 (2017) 331-350.
DOI URL |
[19] |
H. Su, X. Liu, C. Sun, Y. Hong,Fatigue Fract. Eng. Mater. Struct. 40 (2017) 979-993.
DOI URL |
[20] |
X. Pan, H. Su, C. Sun, Y. Hong, Int. J.Fatigue 115 (2018) 67-78.
DOI URL |
[21] |
X. Liu, C. Sun, Y. Hong,Mater. Sci. Eng. A 622 (2015) 228-235.
DOI URL |
[22] |
X. Liu, C. Sun, Y. Hong, Int. J.Fatigue 92 (2016) 434-441.
DOI URL |
[23] |
C. Huang, Y. Zhao, S. Xin, C. Tan, W. Zhou, Q. Li, W. Zeng,Mater. Sci. Eng. A 682 (2017) 107-116.
DOI URL |
[24] |
C. Huang, Y. Zhao, S. Xin, C. Tan, W. Zhou, Q. Li, W. Zeng, Int. J.Fatigue 94 (2017) 30-40.
DOI URL |
[25] |
E. Takeuchi, Y. Furuya, N. Nagashima, S. Matsuoka,Fatigue Fract. Eng. Mater. Struct. 31 (2008) 599-605.
DOI URL |
[26] | X. Pan, S. Xu, G. Qian, A. Nikitin, A. Shanyavskiy, T. Palin-Luc, Y. Hong,Mater. Sci. Eng. A 798 (2020) 140110. |
[27] | C. Sun, W. Chi, W. Wang, Y. Duan,Int. J. Mech. Sci. 205 (2021) 106591. |
[28] | M. Filippini, S. Beretta, L. Patriarca, G. Pasquero,S. Sabbadini, Procedia Eng 10 (2011) 3677-3682. |
[29] | M. Filippini, S. Beretta, L. Patriarca, G. Pasquero, S. Sabbadini,J. ASTM Int. 9 (2012) 1-12. |
[30] | M. Ding, Y. Zhang, H. Lu, Int. J.Fatigue 139 (2020) 105793. |
[31] |
J. Wang, W. Peng, J. Yu, J. Wang, M. Ding, Y. Zhang,Mater. Sci. Technol. 37 (2021) 301-313.
DOI URL |
[32] |
M. Nazmy, M. Staubli, G. Onofrio, V. Lupinc,Scr. Mater. 45 (2001) 787-792.
DOI URL |
[33] | Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials,ASTM Int., West Conshohocken, PA, 2015. |
[34] | C. Sun,Q. Song, Metals 8 (2018) 811. |
[35] | Y. Hong, A. Zhao, G. Qian,Acta Metall. Sin. 45 (2009) 769-780. |
[36] |
Z. Huang, H. Liu, H. Wang, D. Wagner, M. Khan, Q. Wang, Int. J.Fatigue 93 (2016) 232-237.
DOI URL |
[37] | J.C. Stinville, E. Martin, M. Karadge, S. Ismonov, M. Soare, T. Hanlon, S. Sun- daram, M.P. Echlin, P.G. Callahan,W.C. Lenthe, Acta Mater 152 (2018) 16-33. |
[38] |
A. Cervellon, J. Cormier, F. Mauget, Z. Hervier, Y. Nadot,Metall. Mater. Trans. A 49 (2018) 3938-3950.
DOI URL |
[39] |
H. Kobayashi, A. Todoroki, T. Oomura, T. Sano, T. Takehana, Int. J.Fatigue 28 (2006) 1633-1639.
DOI URL |
[40] |
M. Zhu, F. Xuan, Y. Du, S. TuInt, J.Fatigue 40 (2012) 74-83.
DOI URL |
[41] | C. Sun, Q. Song, L. Zhou, J. Liu, Y. Wang, X. Wu, Y. Wei, Int. J.Fatigue 124 (2019) 483-492. |
[42] | Y. Murakami,Metal fatigue:effects of small defects and nonmetallic inclusions, Academic Press, 2019. |
[43] | W. Chi, W. Wang, W. Xu, G. Li, X. Chen, C. Sun,Eng. Fract. Mech. 259 (2021) 108136. |
[1] | Olga Sacco, Paola Franco, Iolanda De Marco, Vincenzo Vaiano, Emanuela Callone, Riccardo Ceccato, Francesco Parrino. Photocatalytic activity of Eu-doped ZnO prepared by supercritical antisolvent precipitation route: When defects become virtues [J]. J. Mater. Sci. Technol., 2022, 112(0): 49-58. |
[2] | Huimin Xiang, Pengyun Liu, Wei Wang, Ran Ran, Wei Zhou, Zongping Shao. Sodium fluoride sacrificing layer concept enables high-efficiency and stable methylammonium lead iodide perovskite solar cells [J]. J. Mater. Sci. Technol., 2022, 113(0): 138-146. |
[3] | Bin Wu, Hongliang Ming, Fanjiang Meng, Yifeng Li, Guangqing He, Jianqiu Wang, En-Hou Han. Effects of surface grinding for scratched alloy 690TT tube in PWR nuclear power plant: Microstructure and stress corrosion cracking [J]. J. Mater. Sci. Technol., 2022, 113(0): 229-245. |
[4] | Yichen Wang, Buhao Zhang, Chengyu Zhang, Jie Yin, Michael J. Reece. Ablation behaviour of (Hf-Ta-Zr-Nb)C high entropy carbide ceramic at temperatures above 2100 °C [J]. J. Mater. Sci. Technol., 2022, 113(0): 40-47. |
[5] | Thi Kim Anh Nguyen, Thanh-Truc Pham, Bolormaa Gendensuren, Eun-Suok Oh, Eun Woo Shin. Defect engineering of water-dispersible g-C3N4 photocatalysts by chemical oxidative etching of bulk g-C3N4 prepared in different calcination atmospheres [J]. J. Mater. Sci. Technol., 2022, 103(0): 232-243. |
[6] | J. Fu, H. Li, X. Song, M.W. Fu. Multi-scale defects in powder-based additively manufactured metals and alloys [J]. J. Mater. Sci. Technol., 2022, 122(0): 165-199. |
[7] | Honglin Yan, Jianqiu Wang, Zhiming Zhang, Bright O. Okonkwo. Effects of cutting parameter on microstructure and corrosion behavior of 304 stainless steel in simulated primary water [J]. J. Mater. Sci. Technol., 2022, 122(0): 219-230. |
[8] | Ze Zhang, Shizhen Zhu, Fu-Zhi Dai, Huimin Xiang, Yanbo Liu, Ling Liu, Zhuang Ma, Shijiang Wu, Fei Liu, Kuang Sun, Yanchun Zhou. Theoretical predictions and experimental verification on the phase stability of enthalpy-stabilized HE TMREB2s [J]. J. Mater. Sci. Technol., 2022, 121(0): 154-162. |
[9] | Xiaodong Lin, Qunjia Peng, Yaolei Han, En-Hou Han, Wei Ke. Effect of thermal ageing and dissolved gas on corrosion of 308L stainless steel weld metal in simulated PWR primary water [J]. J. Mater. Sci. Technol., 2022, 96(0): 308-324. |
[10] | Yan Zhang, Chengjie Lu, Yun Dong, Min Zhou, Jiandang Liu, Hongjun Zhang, Bangjiao Ye, ZhengMing Sun. Insights into the dual-roles of alloying elements in the growth of Sn whiskers [J]. J. Mater. Sci. Technol., 2022, 117(0): 65-71. |
[11] | Keqiang Zhang, Qiaoyu Meng, Xueqin Zhang, Zhaoliang Qu, Rujie He. Quantitative characterization of defects in stereolithographic additive manufactured ceramic using X-ray computed tomography [J]. J. Mater. Sci. Technol., 2022, 118(0): 144-157. |
[12] | A. Shuitcev, Y. Ren, B. Sun, G.V. Markova, L. Li, Y.X. Tong, Y.F. Zheng. Precipitation and coarsening kinetics of H-phase in NiTiHf high temperature shape memory alloy [J]. J. Mater. Sci. Technol., 2022, 114(0): 90-101. |
[13] | Zijian Zhou, Rui Zhang, Chuanyong Cui, Yizhou Zhou, Xiaofeng Sun, Jinglong Qu, Yu Gu, Jinhui Du, Yi Tan. Deformation micro-twinning arising at high temperatures in a Ni-Co-based superalloy [J]. J. Mater. Sci. Technol., 2022, 115(0): 10-18. |
[14] | Heng Ma, Xin Liu, Ning Liu, Yan Zhao, Yongguang Zhang, Zhumabay Bakenov, Xin Wang. Defect-rich porous tubular graphitic carbon nitride with strong adsorption towards lithium polysulfides for high-performance lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2022, 115(0): 140-147. |
[15] | Wei Wei, Shujiang Geng, Fuhui Wang. Evaluation of Ni-Fe base alloys as inert anode for low-temperature aluminium electrolysis [J]. J. Mater. Sci. Technol., 2022, 107(0): 216-226. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||