J. Mater. Sci. Technol. ›› 2022, Vol. 125: 238-251.DOI: 10.1016/j.jmst.2022.02.029
• Research Article • Previous Articles Next Articles
X.M. Meia, Q.S. Meia,b,*(), J.Y. Lic, C.L. Lia, L. Wana, F. Chena, Z.H. Chena, T. Xua, Y.C. Wanga, Y.Y. Tana
Received:
2021-12-16
Revised:
2022-01-31
Accepted:
2022-02-15
Published:
2022-04-10
Online:
2022-04-10
Contact:
Q.S. Mei
About author:
* E-mail address: qsmei@whu.edu.cn (Q.S. Mei).X.M. Mei, Q.S. Mei, J.Y. Li, C.L. Li, L. Wan, F. Chen, Z.H. Chen, T. Xu, Y.C. Wang, Y.Y. Tan. Solid-state alloying of Al-Mg alloys by accumulative roll-bonding: Microstructure and properties[J]. J. Mater. Sci. Technol., 2022, 125: 238-251.
Fig. 3. Microstructure of different Al-Mg intermediate samples: (a)-(d) Mg elemental distribution of Al-17Mg intermediate samples after ARB with different N ((a) 10; (b) 30; (c) 50; (d) 70) characterized by SEM-EDS; Insets are the corresponding elemental distribution of Al;
Fig. 4. (a) XRD patterns of Al-17Mg intermediate samples with different N; (b) Magnified XRD pattern in (a); (c) Microhardness of Al-17Mg intermediate samples with different N; (d) XRD patterns of Al-Mg intermediate samples with different CMg, inset is the magnified XRD pattern in (d).
Fig. 5. Microstructure of Al-13Mg intermediate sample: (a) TEM image, inset is the SADF pattern; (b) Statistics of grain size with an average value of 85 nm; (c, d) HRTEM images of the α-Al matrix of two different areas within an Al grain after noise reduction, insets are the corresponding FFT images.
Fig. 6. HRTEM images of Al-13Mg intermediate sample: (a, b) SF and the corresponding magnified image of the red box in (a), inset in (b) is the corresponding FFT image; (c, d) 9R phase and the corresponding magnified HRTEM image of 9R phase in the red box in (c), inset in (d) is the corresponding FFT image.
Fig. 7. Microstructure of Al-13Mg intermediate sample: (a, c) HRTEM images which show solute clusters formed in different areas of the alloy, insets are the corresponding FFT images of red boxes; (b, d) Corresponding magnified images of areas marked by red boxes in (a, c) respectively; (e) HRTEM image of Al3Mg2 phase, the shape of the Al3Mg2 phase is marked by yellow dotted line; (f) Corresponding magnified image of area marked by the red box in (e); (g) HRTEM image which shows the existence of pure Mg, inset is the corresponding FFT image of the red box; (h) Corresponding magnified image of area marked by the red box in (g).
Fig. 8. (a) XRD patterns of Al-Mg final as-prepared samples with different CMg; (b) Magnified XRD patterns in (a); (c) Calculated lattice parameters of Al-Mg final samples with different CMg; (d) Measured Mg content in samples with different CMg by using different methods.
Fig. 9. Microstructure of as-prepared Al-13Mg alloy: (a) TEM image, inset is the SADF pattern; (b) Statistics of grain size with an average value of 531 nm; (c) HRTEM image of the α-Al matrix; (d) Corresponding magnified image of the red box in (c) after noise reduction, inset is the corresponding FFT image.
Fig. 10. Microstructure of as-prepared Al-13Mg alloy: (a) HRTEM image of SF; (b) Magnified HRTEM images of the red box in (a), inset is the corresponding FFT pattern; (c) 9R phase; (d) Magnified HRTEM images of the red box in (c), inset is the corresponding FFT pattern.
Fig. 11. Microstructure of as-prepared Al-13Mg alloy: (a) TEM image; (b) corresponding chemical distribution image; (c) HRTEM image of solute cluster; (d) corresponding FFT image of (c); (e) Al3Mg2 phase; (f) IFFT image and inset is the FFT image of red box in (e).
Fig. 12. Mechanical properties of as-prepared Al-Mg alloys: (a) microhardness; (b) engineering strain-stress curves; (c) work hardening rate versus true strain curves, inset is the true strain-stress curves; (d) UTS versus elongation for different Al-Mg alloys in this study.
Fig. 14. UTS versus the mass loss of different Al-Mg alloy in NAMLT. CR: cold rolling; A: annealing; ST: solution treatment; H128, T6, H15, T5, T8, H321, O: different states of heat treatment. The dotted line in the figure is the dividing line susceptible to IGC.
Fig. 15. Sensitized Al-13Mg alloy: (a, c) TEM image; (b) STEM image, showing the clear grain boundary; (d) HRTME image of corresponding grain boundary in (c); (e, f) Corresponding EDS mapping images of the red box in (c).
Fig. 16. Sensitized Al-13Mg alloy: (a) STEM image; (b, c) HRTEM images of solute cluster; (d) corresponding FFT image of (c); (e) HRTME image of Al3Mg2 phase; (f) corresponding FFT image of (e).
Fig. 17. Measured yield strength and the relative contribution of different strengthening mechanisms to the strength of different Al-Mg alloys. ∆σp: contribution of precipitating strengthening; ∆σd: contribution of dislocation strengthening; ∆σgr: contribution of grain boundary strengthening; ∆σs: contribution of solid solution strengthening; σ0: the lattice friction stress in pure Al.
[1] |
R. Zhang, Y. Zhang, Y. Yan, S. Thomas, C.H.J. Davies, N. Birbilis, Corros. Sci. 126 (2017) 324-333.
DOI URL |
[2] |
Z. Li, D.Q. Yi, C.Y. Tan, B. Wang, J. Alloys Compd. 817 (2020) 152690.
DOI URL |
[3] |
Y.S. Ding, K.Y. Gao, X.Y. Xiong, H. Huang, S.P. Wen, X.L. Wu, Z.R. Nie, R. Shao, C. Huang, S.S. Guo, D.J. Zhou, Scr. Mater. 171 (2019) 26-30.
DOI URL |
[4] | M.L.C. Lim, R.G. Kelly, J.R. Scully, D.H. Jang, Corrosion-Us 72 (2) (2016) 198-220. |
[5] |
D.H. Jang, Y.B. Park, W.J. Kim, Mater. Sci. Eng. A 744 (2019) 36-44.
DOI URL |
[6] |
M.E. McMahon, Z.D. Harris, J.R. Scully, J.T. Burns, Mater. Sci. Eng. A 767 (2019) 138399.
DOI URL |
[7] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI |
[8] |
Q. Luo, H. Chen, W. Chen, C. Wang, W. Xu, Q. Li, Scr. Mater. 187 (2020) 413-417.
DOI URL |
[9] |
Y. Li, B. Hu, B. Liu, A. Nie, Q. Gu, J. Wang, Q. Li, Acta. Mater. 187 (2020) 51-65.
DOI URL |
[10] |
Y. Ding, X. Wu, K. Gao, C. Huang, X. Xiong, H. Huang, S. Wen, Z. Nie, Mater. Charact. 161 (2020) 110143.
DOI URL |
[11] |
W. Sun, Y. Zhu, R. Marceau, L. Wang, Q. Zhang, X. Gao, C. Hutchinson, Science 363 (2019) 972-975.
DOI URL |
[12] |
J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock, Nature 549 (2017) 365-369.
DOI URL |
[13] | G. Song, J. Shen, Z. Jiang, Q. Li, Mater. Sci. Eng. A 179-180 (1994) 249-251. |
[14] |
W. Li, C. Cao, S. Yin, Prog. Mater. Sci. 110 (2020) 100633.
DOI URL |
[15] |
T. Zhang, W.L. Ren, J.W. Dong, X. Li, Z.M. Ren, G.H. Cao, Y.B. Zhong, K. Deng, Z.S. Lei, J.T. Guo, J. Alloys compd. 487 (1-2) (2009) 612-617.
DOI URL |
[16] |
W.G. Zhao, H.Y. Wang, J.G. Wang, D.M. Yao, H.L. Zhao, Q.C. Jiang, Adv. Eng. Mater. 10 (12) (2008) 1114-1116.
DOI URL |
[17] |
C. Suryanarayana, Prog. Mater. Sci. 46 (2001) 1-184.
DOI URL |
[18] |
F. Zhou, X.Z. Liao, Y.T. Zhu, S. Dallek, E.J. Lavernia, Acta. Mater. 51 (2003) 2777-2791.
DOI URL |
[19] |
D.L. Zhang, Prog. Mater. Sci. 49 (2004) 537-560.
DOI URL |
[20] |
Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Acta. Mater. 47 (1999) 579-583.
DOI URL |
[21] |
X. Zhang, Y. Yu, B. Liu, Y. Zhao, J. Ren, Y. Yan, R. Cao, J. Chen, J. Alloys compd. 783 (2019) 55-65.
DOI URL |
[22] |
M. Eizadjou, A.K. Talachi, H.D. Manesh, H.S. Shahabi, K. Janghorban, Compos. Sci. Technol. 68 (2008) 2003-2009.
DOI URL |
[23] |
M.C. Chen, H.C. Hsieh, W.T. Wu, J. Alloys compd. 416 (2006) 169-172.
DOI URL |
[24] |
O. Ghaderi, M.R. Toroghinejad, A. Najafizadeh, Mater. Sci. Eng. A 565 (2013) 243-249.
DOI URL |
[25] |
C. Li, X. Feng, Y. Shen, W. Chen, Mater. Des. 90 (2016) 922-930.
DOI URL |
[26] | F. Chen, Q.S. Mei, J.Y. Li, C.L. Li, L. Wan, G.D. Zhang, X.M. Mei, Z.H. Chen, T. Xu, Y. C. Wang, Compos. Prt. B 216 (2021) 108850. |
[27] |
X.M. Mei, Q.S. Mei, C.L. Li, L. Wan, F. Chen, Z.H. Chen, Y. Ma, T. Xu, J.Y. Li, Mater. Sci. Eng. A 799 (2021) 140217.
DOI URL |
[28] |
G.K. Williamson, W.H. Hall, Acta. Metall. Mater. 1 (1953) 22-31.
DOI URL |
[29] |
G.P. Purja Pun, Y. Mishin, Acta. Mater. 57 (2009) 5531-5542.
DOI URL |
[30] |
S.V. Divinski, G. Reglitz, H. Rösner, Y. Estrin, G. Wilde, Acta. Mater. 59 (2011) 1974-1985.
DOI URL |
[31] |
S.O. Gashti, A. Fattah-alhosseini, Y. Mazaheri, M.K. Keshavarz, J. Alloys compd. 658 (2016) 854-861.
DOI URL |
[32] |
Y. Liu, M. Liu, X. Chen, Y. Cao, H.J. Roven, M. Murashkin, R.Z. Valiev, H. Zhou, Scr. Mater. 159 (2019) 137-141.
DOI URL |
[33] |
D.W. Shin, S. Roy, T.R. Watkins, A. Shyam, Comp. Mater. Sci. 138 (2017) 149-159.
DOI URL |
[34] |
W. Xu, B. Zhang, X.Y. Li, K. Le, Science 373 (2021) 683.
DOI PMID |
[35] |
A. Calka, W. Kaczmarek, J.S. Williams, J. Mater. Sci. 28 (1) (1993) 15-18.
DOI URL |
[36] |
R. Li, M. Wang, Z. Li, P. Cao, T. Yuan, H. Zhu, Acta. Mater. 193 (2020) 83-98.
DOI URL |
[37] |
D.Y. Xie, J. Yan, Y. Li, D. Qiu, G. Wu, X. Wang, B. Chen, Y. Shen, G.Z. Zhu, Mater. Lett. 190 (2017) 225-228.
DOI URL |
[38] |
S.C. Xue, Y.F. Zhang, Q. Li, J. Ding, H. Wang, X. Zhang, Scr. Mater. 192 (2021) 1-6.
DOI URL |
[39] | S. Xue, Z. Fan, O.B. Lawal, R. Thevamaran, Q. Li, Y. Liu, K.Y. Yu, J. Wang, E. L. Thomas, H. Wang, X. Zhang, High-velocity projectile impact induced 9R phase in ultrafine-grained aluminium, Nat. Commun. 8 (2017) 1653. |
[40] |
Y.X. Lai, B.C. Jiang, C.H. Liu, Z.K. Chen, C.L. Wu, J.H. Chen, J. Alloys compd. 701 (2017) 94-98.
DOI URL |
[41] |
X.Y. Li, W.J. Xi, H.G. Yan, J.H. Chen, B. Su, M. Song, Z.Z. Li, Y.L. Li, Mater. Sci. Eng. A 753 (2019) 59-69.
DOI URL |
[42] |
R. Roumina, C.W. Sinclair, Acta. Mater. 58 (1) (2010) 111-121.
DOI URL |
[43] |
F. Fazeli, W.J. Poole, C.W. Sinclair, Acta. Mater. 56 (9) (2008) 1909-1918.
DOI URL |
[44] |
F. Lu, J.K. Sunde, C.D. Marioara, R. Holmestad, B. Holmedal, Mater. Sci. Eng. A 832 (2022) 142500.
DOI URL |
[45] |
G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun, E. Ma, Nat. Mater. 12 (4)(2013) 344-350.
DOI PMID |
[46] |
H. Fang, H. Liu, Y. Yan, X. Luo, X. Xu, X. Chu, Y. Lu, K. Yu, D. Wang, Mater. Sci. Eng. A 804 (2021) 140682.
DOI URL |
[47] |
Z. Tang, F. Jiang, M. Long, J. Jiang, H. Liu, M. Tong, Appl. Surf. Sci. 514 (2020) 146081.
DOI URL |
[48] |
Z. Li, D. Yi, C. Tan, B. Wang, J. Alloys Compd. 817 (2020) 152690.
DOI URL |
[49] | W. Gao, D. Wang, M. Seifi, J.J. Lewandowski, Mater. Sci. Eng. A 740-741 (2019) 34-48. |
[50] |
C. Guo, H. Zhang, Z. Wu, D. Wang, B. Li, J. Cui, Mater. Charact. 147 (2019) 84-92.
DOI URL |
[51] |
P. Zhang, W. Xia, H. Yan, J. Chen, B. Su, X. Li, X. Li, Mater. Corros. 70 (2019) 1798-1807.
DOI |
[52] |
Y.C. Tzeng, R.Y. Chen, S.L. Lee, Mater. Chem. Phys. 259 (2021) 124202.
DOI URL |
[53] |
A. Alil, M. Popovi ´ c, T. Radeti ´ c, M. Zrili ´ c, E. Romhanji, J. Alloys Compd. 625 (2015) 76-84.
DOI URL |
[54] |
O. Engler, C.D. Marioara, T. Hentschel, H.J. Brinkman, J. Alloys Compd. 710 (2017) 650-662.
DOI URL |
[55] | A. Alil, M. Popovic, J. Bajat, E. Romhanji, Mater. Corros. 69 (2018) 858-869. |
[56] | X. Li, W. Xia, H. Yan, J. Chen, B. Su, X. Li, Mater. Corros. 71 (2020) 1802-1811. |
[57] |
C. Guo, H. Zhang, S.S. Li, R.X. Chen, Y.F. Nan, L. Li, P. Wang, B.M. Li, J.Z. Cui, H. Nagaumi, Corros. Sci. 188 (2021) 109551.
DOI URL |
[58] |
Y.H. Zhao, X.Z. Liao, Z. Jin, R.Z. Valiev, Y.T. Zhu, Acta. Mater. 52 (2004) 4589-4599.
DOI URL |
[59] |
K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, J. M. Schoenung, Acta. Mater. 62 (2014) 141-155.
DOI URL |
[60] |
P. Zhang, K. Shi, J. Bian, J. Zhang, Y. Peng, G. Liu, A. Deschamps, J. Sun, Acta. Mater. 207 (2021) 116682.
DOI URL |
[1] | Zhen Jiang, Ran Wei, Wenzhou Wang, Mengjia Li, Zhenhua Han, Shuhan Yuan, Kaisheng Zhang, Chen Chen, Tan Wang, Fushan Li. Achieving high strength and ductility in Fe50Mn25Ni10Cr15 medium entropy alloy via Al alloying [J]. J. Mater. Sci. Technol., 2022, 100(0): 20-26. |
[2] | Yingzhi Jiao, Siyao Cheng, Fan Wu, Jiaoyan Shi, Aming Xie, Xufei Zhu, Wei Dong. Microporous polythiophene (MPT)-guest complex derived magnetic metal sulfides/carbon nanocomposites for broadband electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 100(0): 206-215. |
[3] | Kaiju Lu, Ankur Chauhan, Dimitri Litvinov, Aditya Srinivasan Tirunilai, Jens Freudenberger, Alexander Kauffmann, Martin Heilmaier, Jarir Aktaa. Micro-mechanical deformation behavior of CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 237-245. |
[4] | Sensen Chai, Shiyu Zhong, Qingshan Yang, Daliang Yu, Qingwei Dai, Hehe Zhang, Limeng Yin, Gang Wang, Zongxiang Yao. Transformation of Laves phases and its effect on the mechanical properties of TIG welded Mg-Al-Ca-Mn alloys [J]. J. Mater. Sci. Technol., 2022, 120(0): 108-117. |
[5] | Rui Liu, Xiang He, Miao Miao, Shaomei Cao, Xin Feng. In-situ growth of porous Cu3(BTC)2 on cellulose nanofibrils for ultra-low dielectric films with high flexibility [J]. J. Mater. Sci. Technol., 2022, 112(0): 202-211. |
[6] | Shuang Liu, Mengjie Sheng, Hao Wu, Xuetao Shi, Xiang Lu, Jinping Qu. Biological porous carbon encapsulated polyethylene glycol-based phase change composites for integrated electromagnetic interference shielding and thermal management capabilities [J]. J. Mater. Sci. Technol., 2022, 113(0): 147-157. |
[7] | Zibao Jiao, Wenjun Huyan, Junru Yao, Zhengjun Yao, Jintang Zhou, Peijiang Liu. Heterogeneous ZnO@CF structures and their excellent microwave absorbing properties with thin thickness and low filling [J]. J. Mater. Sci. Technol., 2022, 113(0): 166-174. |
[8] | Chen Chen, Yanzhou Fan, Wei Wang, Hang Zhang, Jialiang Hou, Ran Wei, Tao Zhang, Tan Wang, Mo Li, Shaokang Guan, Fushan Li. Synthesis of ultrafine dual-phase structure in CrFeCoNiAl0.6 high entropy alloy via solid-state phase transformation during sub-rapid solidification [J]. J. Mater. Sci. Technol., 2022, 113(0): 253-260. |
[9] | Shuaishuai Liu, Han Liu, Xiang Chen, Guangsheng Huang, Qin Zou, Aitao Tang, Bin Jiang, Yuntian Zhu, Fusheng Pan. Effect of texture on deformation behavior of heterogeneous Mg-13Gd alloy with strength-ductility synergy [J]. J. Mater. Sci. Technol., 2022, 113(0): 271-286. |
[10] | Zhichao Lou, Qiuyi Wang, Xiaodi Zhou, Ufuoma I. Kara, Rajdeep S. Mamtani, Hualiang Lv, Meng Zhang, Zhihong Yang, Yanjun Li, Chenxuan Wang, Solomon Adera, Xiaoguang Wang. An angle-insensitive electromagnetic absorber enabling a wideband absorption [J]. J. Mater. Sci. Technol., 2022, 113(0): 33-39. |
[11] | Yichen Wang, Buhao Zhang, Chengyu Zhang, Jie Yin, Michael J. Reece. Ablation behaviour of (Hf-Ta-Zr-Nb)C high entropy carbide ceramic at temperatures above 2100 °C [J]. J. Mater. Sci. Technol., 2022, 113(0): 40-47. |
[12] | Jun Xu, Bin Jiang, Yuehua Kang, Jun Zhao, Weiwen Zhang, Kaihong Zheng, Fusheng Pan. Tailoring microstructure and texture of Mg-3Al-1Zn alloy sheets through curve extrusion process for achieving low planar anisotropy [J]. J. Mater. Sci. Technol., 2022, 113(0): 48-60. |
[13] | Jianping Yang, Linwen Jiang, Zhonghao Liu, Zhuo Tang, Anhua Wu. Multifunctional interstitial-carbon-doped FeCoNiCu high entropy alloys with excellent electromagnetic-wave absorption performance [J]. J. Mater. Sci. Technol., 2022, 113(0): 61-70. |
[14] | Jun Wang, Yao Lu, Fanghui Jia, Wenzhen Xia, Fei Lin, Jian Han, Ruichao Wang, Zengxi Pan, Huijun Li, Zhengyi Jiang. Effects of inter-layer remelting frequency on the microstructure evolution and mechanical properties of equimolar CoCrFeNiMn high entropy alloys during in-situ powder-bed arc additive manufacturing (PBAAM) process [J]. J. Mater. Sci. Technol., 2022, 113(0): 90-104. |
[15] | Changyan Chen, Ting Jiang, Jianhua Hou, Tingting Zhang, Geshan Zhang, Yongcai Zhang, Xiaozhi Wang. Oxygen vacancies induced narrow band gap of BiOCl for efficient visible-light catalytic performance from double radicals [J]. J. Mater. Sci. Technol., 2022, 114(0): 240-248. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||