J. Mater. Sci. Technol. ›› 2022, Vol. 112: 202-211.DOI: 10.1016/j.jmst.2021.09.055
• Research Article • Previous Articles Next Articles
Rui Liua, Xiang Hea,*(), Miao Miaob, Shaomei Caob, Xin Fengb,*(
)
Received:
2021-08-04
Revised:
2021-09-04
Accepted:
2021-09-14
Published:
2021-12-26
Online:
2021-12-26
Contact:
Xiang He,Xin Feng
About author:
fengxin@shu.edu.cn (X. Feng).Rui Liu, Xiang He, Miao Miao, Shaomei Cao, Xin Feng. In-situ growth of porous Cu3(BTC)2 on cellulose nanofibrils for ultra-low dielectric films with high flexibility[J]. J. Mater. Sci. Technol., 2022, 112: 202-211.
Scheme 1. Schematic of the pressured-extrusion papermaking process for ANFx/CNF@CuBTCy hybrid films (crystal structure of the CuBTC framework without adsorbed water molecules (color scheme: copper in blue, oxygen in red, and carbon in gray).
Fig. 1. (a) Digital pictures of as-prepared CNF, CNF@CuBTC, ANF, ANF/CNF@CuBTC corresponding to 1:0, 1:1, 2:1 and 1:2 with diameters of 9 cm, and the film under bending (picture in the bottom left corner is the contact angle chart during measuring), marking the thickness of the film at the bottom of the images. SEM micrographs of as-synthesized (b) CNF, (c) ANF, (d) CNF@CuBTC, (i) ANF/CNF@CuBTC, (e) the EDS of CNF@CuBTC film and the corresponding elemental mapping images of (f) C, (g) O and (h) Cu, (j) AFM topography image of ANF/CNF@CuBTC film.
Fig. 2. (a) XRD patterns, (b) FTIR spectra, (c) UV-vis absorption spectra, and (d) UV-vis transmittance spectra of ANF, CNF, CNF@CuBTC and ANFx/CNF@CuBTCy films.
Fig. 4. Schematic representation of the removal of guest molecules from porous MOF. (a) Polar solvents filled and (b) guest-free CuBTC; SEM micrographs (c) before and (d) after vacuum heat treatment; (e) XRD patterns and (f) FT-IR spectra of the ANFx/CNF@CuBTCy? composite films after removal of guest molecules.
Fig. 5. XPS analysis of composite films before (Polar-solvents) and after (Guest-free) removal of guest molecules. (a) Survey spectra and the corresponding high-resolution spectra of (b) C 1 s, (c) O 1 s and (d) Cu 2p.
Fig. 6. (a) Stress-strain curves and (b) TG curves of the films after VHT. BET curves of ANF/CNF and ANF/CNF@CuBTC films (c) before and (d) after the removal of guest molecules.
Fig. 7. (a, c) Dk and (b, d) Df curves of the films before and after removal of guest molecules at the frequency range from 10 to 108 Hz (For clarity, Dk and Df curves of composite films are placed on the right inside a dotted box).
Fig. 8. Comparison of (a) Dk for the reported MOFs and (b) dielectric constant for the polymer-based composites films with modification in various ways. (The abbreviation of the above presentation is elaborated in Tables S2 and S3).
[1] |
J.-.R. Meng, G.-.Z. Liang, L. Zhao, Compos. Sci. Technol. 62 (2002) 783-789.
DOI URL |
[2] | M.-.R. Baklanov, K. Maex, Philos. Trans. R. Soc. A-Math. Phys. Eng, Sci. 364 (2006) 201-215. |
[3] | W.-.W. Lee, P.-.S. Ho, MRS Bull 22 (1997) 19-27. |
[4] | L. Wang, C. Liu, S. Shen, M. Xu, X. Liu, Adv. Indust. Eng. Polym. Res. 3 (2020) 138-148. |
[5] | X. Zhang, Y. Zhang, X. Zhang, S. Guo, Surf. Interfaces 22 (2021) 100807. |
[6] |
S. Arcaro, T.-.B. Wermuth, R.-Y.-S. Zampiva, J. Venturini, C.-.S. ten Caten, C.-.P. Bergmann, A.-.K. Alves, A.-P.-N. de Oliveira, R. Moreno, J. Eur. Ceram. Soc. 39 (2019) 491-498.
DOI |
[7] |
K. Maex, M.-.R. Baklanov, D. Shamiryan, F. lacopi, S.-.H. Brongersma, Z.-.S. Yanovitskaya, J. Appl. Phys. 93 (2003) 8793-8841.
DOI URL |
[8] | W. Ling, A. Gu, G. Liang, L. Yuan, Polym.Compos 31 (2010) 307-313. |
[9] |
Z. Wang, M. Zhang, E. Han, H. Niu, D. Wu, Polymer (Guildf) 206 (2020) 122884.
DOI URL |
[10] |
D. Shrivastava, P.-.S. Goyal, S.-.K. Deshpande, J. Phys.: Conf. Ser. 1644 (2020) 012039.
DOI URL |
[11] |
Z. Pu, X. Zheng, J. Xia, J. Zhong, Polym. Int. 69 (2020) 604-610.
DOI URL |
[12] |
Z. Pu, J. Xia, X. Liu, Q. Wang, J. Liu, X. He, J. Zhong, J. Mater. Sci.: Mater. Electron. 32 (2020) 967-976.
DOI URL |
[13] |
Y. Guo, S. Wang, K. Ruan, H. Zhang, J.-.W. Gu, npj Flex. Electron. 5 (2021) 16.
DOI URL |
[14] |
Z. Wang, Y. Shang, X. Han, Q. Yan, J. Liu, Z. Jiang, H. Zhang, Macromol. Mater. Eng. 305 (2020) 1900866.
DOI URL |
[15] |
S. Galli, A. Cimino, J.-.F. Ivy, C. Giacobbe, R.-.K. Arvapally, R. Vismara, S. Checchia, M.-.A. Rawshdeh, C.-.T. Cardenas, W.-.K. Yaseen, A. Maspero, M.-.A. Omary, Adv. Funct. Mater. 29 (2019) 1904707.
DOI URL |
[16] |
X. Li, T. Liu, Y. Jiao, J. Dong, F. Gan, X. Zhao, Q. Zhang, Chem. Eng. J. 359 (2019) 641-651.
DOI URL |
[17] | K. Ruan, Y. Guo, J. Gu, Macromolecules 54 (2021) 4 934-4 944. |
[18] |
C.-.C. Kuo, Y.-.C. Lin, Y.-.C. Chen, P.-.H. Wu, S. Ando, M. Ueda, W.-.C. Chen, ACS Appl. Polym. Mater. 3 (2020) 362-371.
DOI URL |
[19] |
Y. Kourakata, T. Onodera, H. Kasai, H. Jinnai, H. Oikawa, Polymer (Guildf) 212 (2021) 123115.
DOI URL |
[20] |
S.-.J. Yoon, K. Pak, T. Nam, A. Yoon, H. Kim, S.-.G. Im, B.-.J. Cho, ACS Nano 11 (2017) 7841-7847.
DOI URL |
[21] |
S. Han, Y. Li, F. Hao, H. Zhou, S. Qi, G. Tian, D. Wu, Eur. Polym. J. 143 (2021) 110206.
DOI URL |
[22] | Y. Wu, Z. Chen, J. Ji, Y. Zhou, H. Huang, S. Liu, J. Zhao, Eur. Polym.J. 132 (2020) 109742. |
[23] |
X. Yu, D. Bobb-Semple, I.-.K. Oh, T.-.L. Liu, R.-.G. Closser, W. Trevillyan, S.-.F. Bent, Chem. Mater. 33 (2021) 902-909.
DOI URL |
[24] | P. Lv, Z. Dong, X. Dai, X. Qiu, A.C.S. Appl, Polym. Mater. 1 (2019) 2597-2605. |
[25] |
C. Huang, J. Li, G. Xie, F. Han, D. Huang, F. Zhang, B. Zhang, G. Zhang, R. Sun, C.-.P. Wong, Macromol. Mater. Eng. 304 (2019) 1900505.
DOI URL |
[26] |
Y. Thakur, T. Zhang, C. Iacob, T. Yang, J. Bernholc, L.-.Q. Chen, J. Runt, Q.-.M. Zhang, Nanoscale 9 (2017) 10992-10997.
DOI PMID |
[27] |
M.-.R. Vengatesan, S. Devaraju, K. Dinakaran, M. Alagar, J. Mater. Chem. 22 (2012) 7559.
DOI URL |
[28] | S. Sanati, R. Abazari, J. Albero, A. Morsali, H. Garcia, Z. Liang, R. Zou, Angew. Chem. Int. Ed. 59 (2020) 2-22. |
[29] | W.-.G. Cui, T.-.L. Hu, X.-.H. Bu, Adv. Mater. 32 (2020) e1806445. |
[30] |
S. Gao, G. Zhang, Y. Wang, X. Han, Y. Huang, P. Liu, J. Mater. Sci. Technol. 88 (2021) 56-65.
DOI URL |
[31] |
W.-.P. Lustig, S. Mukherjee, N.-.D. Rudd, A.-.V. Desai, J. Li, S.-.K. Ghosh, Chem. Soc. Rev. 46 (2017) 3242-3285.
DOI URL |
[32] |
M. Usman, S. Mendiratta, K.-.L. Lu, Adv. Mater. 29 (2017) 1605071.
DOI URL |
[33] |
J. Zhou, Q. Yang, Q. Xie, H. Ou, X. Lin, A. Zeb, L. Hu, Y. Wu, G. Ma, J. Mater. Sci. Technol. 96 (2022) 262-284.
DOI URL |
[34] |
S. Mendiratta, M. Usman, K.-.L. Lu, Coordin. Chem. Rev. 360 (2018) 77-91.
DOI URL |
[35] |
R. Scatena, Y.T. Guntern, P. Macchi, J. Am. Chem. Soc. 141 (2019) 9382-9390.
DOI URL |
[36] |
M. Krishtab, I. Stassen, T. Stassin, A.-.J. Cruz, O.-.O. Okudur, S. Armini, C. Wilson, S. De Gendt, R. Ameloot, Nat. Commun. 10 (2019) 3729.
DOI PMID |
[37] |
W.-.J. Li, J. Liu, Z.-.H. Sun, T.-.F. Liu, J. Lu, S.-.Y. Gao, C. He, R. Cao, J.-.H. Luo, Nat. Commun. 7 (2016) 11830.
DOI URL |
[38] |
M. Usman, S. Mendiratta, K.-.L. Lu, ChemElectroChem 2 (2015) 786-788.
DOI URL |
[39] |
E. Choi, S.-.J. Hong, Y.-.J. Kim, S.-.E. Choi, Y. Choi, J.-.H. Kim, J. Kang, O. Kwon, K. Eum, B. Han, D.-.W. Kim, Adv. Funct. Mater. 31 (2021) 2011146.
DOI URL |
[40] |
Y. Li, H. Yuan, Y. Chen, X. Wei, K. Sui, Y. Tan, J. Mater. Sci. Technol. 74 (2021) 189-202.
DOI URL |
[41] |
S. Zhou, X. Kong, B. Zheng, F. Huo, M. Stromme, C. Xu, ACS Nano 13 (2019) 9578-9586.
DOI URL |
[42] |
J. Li, C. Jiao, J. Zhu, L. Zhong, T. Kang, S. Aslam, J. Wang, S. Zhao, Y. Qiu, J. Energy Chem. 57 (2021) 469-476.
DOI URL |
[43] |
X. Li, X. Sheng, Y. Guo, X. Lu, H. Wu, Y. Chen, L. Zhang, J. Gu, J. Mater. Sci. Technol. 86 (2021) 171-179.
DOI URL |
[44] |
B. Joshi, E. Samuel, Y.-.I. Kim, G. Periyasami, M. Rahaman, S.S. Yoon, J. Mater. Sci. Technol. 67 (2021) 116-126.
DOI URL |
[45] |
L. Zong, Y. Yang, H. Yang, X. Wu, ACS Appl. Mater. Interfaces 12 (2020) 7295-7301.
DOI URL |
[46] | X.-.J. Hong, C.-.L. Song, Y. Yang, H.-.C. Tan, G.-.H. Li, Y.-.P. Cai, H. Wang, ACS Nano 13 (2019) 1923-1931. |
[47] |
X. Ma, Y. Lou, X.-.B. Chen, Z. Shi, Y. Xu, Chem. Eng. J. 356 (2019) 227-235.
DOI URL |
[48] |
M. Miao, J. Zhao, X. Feng, Y. Cao, S. Cao, Y. Zhao, X. Ge, L. Sun, L. Shi, J. Fang, J. Mater. Chem. C 3 (2015) 2511-2517.
DOI URL |
[49] | B. Yang, L. Wang, M. Zhang, J. Luo, Z. Lu, X. Ding, Adv. Funct. Mater. 30 (2020) 20 0 0186. |
[50] | A.-.S. Babal, A.-.K. Chaudhari, H.-H.-M. Yeung, J.-.C. Tan, Adv. Mater. Interface. 7 (2020) 20 0 0408. |
[51] | D. Britt, D. Tranchemontagne, O.-.M. Yaghi, Metal-organic frameworks with high capacity and selectivity for harmful gases, Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 11623-11627. |
[52] | Y. Yin, C. Zhang, W. Yu, G. Kang, Q. Yang, Z. Shi, C. Xiong, Energy Storage Mater. 26 (2020) 105-111. |
[53] |
Z. Lu, L. Si, W. Dang, Y. Zhao, Compos. Part A-Appl. Sci Manuf. 115 (2018) 321-330.
DOI URL |
[54] |
N. Bhoria, G. Basina, J. Pokhrel, K.-S. Kumar Reddy, S. Anastasiou, V.-.V. Balasubramanian, Y.F. AlWahedi, G.N. Karanikolos, J. Hazard. Mater. 394 (2020) 122565.
DOI URL |
[55] |
J. Shangguan, L. Bai, Y. Li, T. Zhang, Z. Liu, G. Zhao, Y. Liu, RSC Adv. 8 (2018) 10509-10515.
DOI URL |
[56] |
L. Wang, Z. Ma, Y. Zhang, L. Chen, D. Cao, J. Gu, SusMat. 1 (2021) 413-431.
DOI URL |
[57] |
L. Tang, J. Zhang, J. Gu, Chin. J. Aeronaut. 34 (2021) 659-668.
DOI URL |
[58] |
J. Zhao, J.-.L. Zhang, L. Wang, J.-.K. Li, T. Feng, J.-.C. Fan, L.-.X. Chen, J.-.W. Gu, Compos. Commun. 22 (2020) 100486.
DOI URL |
[59] | S. Mendiratta, M. Usman, C.-.C. Chang, Y.-.C. Lee, J.-.W. Chen, M.-.K. Wu, Y.-.C. Lin, C.-.P. Hsu, K.-.L. Lu, J. Mater. Chem 5 (2017) 1508-1513. |
[60] | Q. Ye, L. Wang, R.-.T. Yang, Appl. Catal. A-Gen. 427 (2012) 24-34. |
[1] | Jianen Zhou, Qingyun Yang, Qiongyi Xie, Hong Ou, Xiaoming Lin, Akif Zeb, Lei Hu, Yongbo Wu, Guozheng Ma. Recent progress in Co-based metal-organic framework derivatives for advanced batteries [J]. J. Mater. Sci. Technol., 2022, 96(0): 262-284. |
[2] | Man Zhang, Di Hu, Zhenhao Xu, Biying Liu, Mebrouka Boubeche, Zuo Chen, Yuchen Wang, Huixia Luo, Kai Yan. Facile synthesis of Ni-, Co-, Cu-metal organic frameworks electrocatalyst boosting for hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 72(0): 172-179. |
[3] | Huaicheng Xiang, Lei Yao, Junqi Chen, Aihong Yang, Haitao Yang, Liang Fang. Microwave dielectric high-entropy ceramic Li(Gd0.2Ho0.2Er0.2Yb0.2Lu0.2)GeO4 with stable temperature coefficient for low-temperature cofired ceramic technologies [J]. J. Mater. Sci. Technol., 2021, 93(0): 28-32. |
[4] | Mengting Cao, Fengli Yang, Quan Zhang, Juhua Zhang, Lu Zhang, Lingfeng Li, Xiaohao Wang, Wei-Lin Dai. Facile construction of highly efficient MOF-based Pd@UiO-66-NH2@ZnIn2S4 flower-like nanocomposites for visible-light-driven photocatalytic hydrogen production [J]. J. Mater. Sci. Technol., 2021, 76(0): 189-199. |
[5] | Tingmin Di, Liuyang Zhang, Bei Cheng, Jiaguo Yu, Jiajie Fan. CdS nanosheets decorated with Ni@graphene core-shell cocatalyst for superior photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2020, 56(0): 170-178. |
[6] | Haifeng Xu, Guang Zhu, Baoming Hao. Metal-organic frameworks derived flower-like Co3O4/nitrogen doped graphite carbon hybrid for high-performance sodium-ion batteries [J]. J. Mater. Sci. Technol., 2019, 35(1): 100-108. |
[7] | Chenchen Zhang, Siyue Wei, Lixian Sun, Fen Xu, Pengru Huang, Hongliang Peng. Synthesis, structure and photocatalysis properties of two 3D Isostructural Ln (III)-MOFs based 2,6-Pyridinedicarboxylic acid [J]. J. Mater. Sci. Technol., 2018, 34(9): 1526-1531. |
[8] | Ying Gong, Wenying Zhou, Zijun Wang, Li Xu, Yujia Kou, Huiwu Cai, Xiangrong Liu, Qingguo Chen, Zhi-Min Dang. Towards suppressing dielectric loss of GO/PVDF nanocomposites with TA-Fe coordination complexes as an interface layer [J]. J. Mater. Sci. Technol., 2018, 34(12): 2415-2423. |
[9] | Muhammad Khan, Aqeel A. Khurram, Tiehu Li, Tingkai Zhao, T. Subhani, I.H. Gul, Zafar Ali, Vivek Patel. Synergistic effect of organic and inorganic nano fillers on the dielectric and mechanical properties of epoxy composites [J]. J. Mater. Sci. Technol., 2018, 34(12): 2424-2430. |
[10] | Mohd Anis, M.D. Shirsat, S.S. Hussaini, B. Joshi, G.G. Muley. Effect of Sodium Metasilicate on Structural, Optical, Dielectric and Mechanical Properties of ADP Crystal [J]. J. Mater. Sci. Technol., 2016, 32(1): 62-67. |
[11] | Md. Monwar Hoque, Alo Dutta, Sanjay Kumar, Tripurari Prasad Sinha. Dielectric Relaxation and Conductivity of Ba(Mg1/3Ta2/3)O3 and Ba(Zn1/3Ta2/3)O3 [J]. J. Mater. Sci. Technol., 2014, 30(4): 311-320. |
[12] | Jichun Chen. La Doping Effect on the Dielectric Property of Barium Strontium Titanate Glass–Ceramics [J]. J. Mater. Sci. Technol., 2014, 30(3): 295-298. |
[13] | J.C. Chen, Y. Zhang. Enhancement of Sinter Densification of SrO-BaO-Nb2O5-SiO2 Tungsten-Bronze Glass-Ceramics by Doping with P2O5 [J]. J. Mater. Sci. Technol., 2013, 29(8): 731-736. |
[14] | M.R. Shah, A.K.M. Akther Hossain. Structural, Dielectric and Complex Impedance Spectroscopy Studies of Lead Free Ca0.5+xNd0.5−x(Ti0.5Fe0.5)O3 [J]. J. Mater. Sci. Technol., 2013, 29(4): 323-329. |
[15] | Huanping Wang, Qinghua Yang, Denghao Li, Lihui Huang, Shilong Zhao, Shiqing Xu. Sintering Behavior and Microwave Dielectric Properties of MgTiO3 Ceramics Doped with B2O3 by Sol-Gel Method [J]. J Mater Sci Technol, 2012, 28(8): 751-755. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||