J. Mater. Sci. Technol. ›› 2022, Vol. 112: 212-221.DOI: 10.1016/j.jmst.2021.09.056
• Research Article • Previous Articles Next Articles
Quanqing Zenga,c, Kefu Ganb,*(), Fei Chena,c, Dongyao Wanga,c, Songsheng Zenga
Received:
2021-05-31
Revised:
2021-09-19
Accepted:
2021-09-29
Published:
2021-12-26
Online:
2021-12-26
Contact:
Kefu Gan
About author:
* E-mail address: gankefu@csu.edu.cn (K. Gan).Quanqing Zeng, Kefu Gan, Fei Chen, Dongyao Wang, Songsheng Zeng. Interstitial concentration effects on incipient plasticity and dislocation behaviors of face-centered cubic FeNiCr multicomponent alloys based on nanoindentation[J]. J. Mater. Sci. Technol., 2022, 112: 212-221.
Fig. 1. (a) The diffractograms of the studied FeNiCr-C0, FeNiCr-C0.5 and FeNiCr-C1 MEAs. EBSD and EDS mappings of (b) FeNiCr-C0, (c) FeNiCr-C0.5 and (d) FeNiCr-C1 MEA after the homogenization treatment. The black rectangle frame stands for the region where the EDS mapping is performed. The green color in the EBSD maps denotes the FCC phase.
Fig. 2. Typical load-displacement (P-h) curves of (a) FeNiCr-C0, (b) FeNiCr-C0.5, and (c) FeNiCr-C1 MEA specimens under a maximum load of 5 mN with a nominal rate of 0.01/s on nanoindentation for grains with orientation [100]FCC, respectively.
Fig. 3. Statistics of hundreds of P-h3/2 pairs at pop-ins and dot lines fitted from Hertzian elastic analysis for (a) FeNiCr-C0, (b) FeNiCr-C0.5 and (c) FeNiCr-C1 MEA specimens loaded at the range of strain rate from 0.2/s to 0.01/s. The dimension of the fitted linear coefficient is μN nm2/3.
Alloy samples | Strain rate (s - 1) | Er (GPa) | The range of τmax (GPa) | |
---|---|---|---|---|
FeNiCrC0 | 0.2 | 183.69±11.01 | ∼2.17 to ∼4.81 | 3.25±0.46 |
0.04 | 183.29±13.69 | ∼1.92 to ∼4.10 | 2.75±0.45 | |
0.01 | 178.74±20.06 | ∼1.39 to ∼2.39 | 2.03±0.26 | |
FeNiCrC0.5 | 0.2 | 189.86±11.32 | ∼2.85 to ∼4.23 | 3.54±0.34 |
0.04 | 184.90±16.18 | ∼2.20 to ∼4.34 | 3.03±0.37 | |
0.01 | 181.15±18.41 | ∼0.87 to ∼3.07 | 2.06±0.40 | |
FeNiCrC1 | 0.2 | 192.92±9.69 | ∼3.07 to ∼4.53 | 3.74±0.35 |
0.04 | 185.14±17.72 | ∼2.31 to ∼3.73 | 3.11±0.32 | |
0.01 | 182.09±25.86 | ∼1.79 to ∼2.87 | 2.24±0.29 |
Table 1. The estimated maximum shear stress τmax of FeNiCr-C0, FeNiCr-C0.5 and FeNiCr-C1 MEA specimens from the experiments applied in various strain rates. The parameter ${{\bar{\tau }}_{\text{max}}}$ corresponds to the average value of τmax.
Alloy samples | Strain rate (s - 1) | Er (GPa) | The range of τmax (GPa) | |
---|---|---|---|---|
FeNiCrC0 | 0.2 | 183.69±11.01 | ∼2.17 to ∼4.81 | 3.25±0.46 |
0.04 | 183.29±13.69 | ∼1.92 to ∼4.10 | 2.75±0.45 | |
0.01 | 178.74±20.06 | ∼1.39 to ∼2.39 | 2.03±0.26 | |
FeNiCrC0.5 | 0.2 | 189.86±11.32 | ∼2.85 to ∼4.23 | 3.54±0.34 |
0.04 | 184.90±16.18 | ∼2.20 to ∼4.34 | 3.03±0.37 | |
0.01 | 181.15±18.41 | ∼0.87 to ∼3.07 | 2.06±0.40 | |
FeNiCrC1 | 0.2 | 192.92±9.69 | ∼3.07 to ∼4.53 | 3.74±0.35 |
0.04 | 185.14±17.72 | ∼2.31 to ∼3.73 | 3.11±0.32 | |
0.01 | 182.09±25.86 | ∼1.79 to ∼2.87 | 2.24±0.29 |
Fig. 4. Plotting the relationship between the term ln[-ln(1-f)] and the maximum shear stress τmax in order to deduce the activation volume by the linear least-squares fitting procedure, with different nominal strain rates of (a) FeNiCr-C0, (b) FeNiCr-C0.5 and (c) FeNiCr-C1 MEA specimens. (d) Double logarithmic plots of the average maximum shear stress as a function of the strain rate.
Alloy samples | Strain rate (s - 1) | Slope | Activation volume | Ωv |
---|---|---|---|---|
FeCrNi-C0 | 0.2 | 2.74±0.04 | 11.31±0.16 Å3 | 0.98±0.01 Ω |
0.04 | 3.18±0.17 | 13.11±0.70 Å3 | 1.13±0.06 Ω | |
0.01 | 3.77±0.12 | 15.54±0.49 Å3 | 1.34±0.04 Ω | |
FeCrNi-C0.5 | 0.2 | 2.94±0.11 | 12.12±0.45 Å3 | 1.05±0.04 Ω |
0.04 | 3.40±0.11 | 13.99±0.45 Å3 | 1.21±0.04 Ω | |
0.01 | 3.95±0.13 | 16.24±0.53 Å3 | 1.41±0.05 Ω | |
FeNiCr-C1 | 0.2 | 3.27±0.12 | 13.45±0.49 Å3 | 1.16±0.04 Ω |
0.04 | 3.58±0.08 | 14.75±0.32 Å3 | 1.27±0.03 Ω | |
0.01 | 4.07±0.17 | 16.75±0.69 Å3 | 1.45±0.06 Ω |
Table 2. The estimated activation volume Ωv for dislocation nucleation of FeCrNi-C0, FeCrNi-C0.5 and FeNiCr-C1 MEAs from the experiments applied in various nominal strain rates. Ω corresponds to the unit atomic volume of the FCC MEA specimens.
Alloy samples | Strain rate (s - 1) | Slope | Activation volume | Ωv |
---|---|---|---|---|
FeCrNi-C0 | 0.2 | 2.74±0.04 | 11.31±0.16 Å3 | 0.98±0.01 Ω |
0.04 | 3.18±0.17 | 13.11±0.70 Å3 | 1.13±0.06 Ω | |
0.01 | 3.77±0.12 | 15.54±0.49 Å3 | 1.34±0.04 Ω | |
FeCrNi-C0.5 | 0.2 | 2.94±0.11 | 12.12±0.45 Å3 | 1.05±0.04 Ω |
0.04 | 3.40±0.11 | 13.99±0.45 Å3 | 1.21±0.04 Ω | |
0.01 | 3.95±0.13 | 16.24±0.53 Å3 | 1.41±0.05 Ω | |
FeNiCr-C1 | 0.2 | 3.27±0.12 | 13.45±0.49 Å3 | 1.16±0.04 Ω |
0.04 | 3.58±0.08 | 14.75±0.32 Å3 | 1.27±0.03 Ω | |
0.01 | 4.07±0.17 | 16.75±0.69 Å3 | 1.45±0.06 Ω |
Alloy sample | Strain rate (s - 1) | m | Activation volume | Ωv |
---|---|---|---|---|
FeCrNi-C0 | 0.2 | 0.193±0.022 | 11.06±1.26 Å3 | 0.96±0.11 Ω |
0.04 | 13.08±1.49 Å3 | 1.13±0.12 Ω | ||
0.01 | 17.67±2.01 Å3 | 1.53±0.17 Ω | ||
FeCrNi-C0.5 | 0.2 | 0.177±0.052 | 11.29±3.31 Å3 | 0.97±0.28 Ω |
0.04 | 13.19±3.86 Å3 | 1.14±0.33 Ω | ||
0.01 | 19.36±5.68 Å3 | 1.67±0.42 Ω | ||
FeNiCr-C1 | 0.2 | 0.154±0.032 | 13.16±2.73 Å3 | 1.13±0.23 Ω |
0.04 | 14.11±2.93 Å3 | 1.21±0.25 Ω | ||
0.01 | 19.56±4.06 Å3 | 1.69±0.35 Ω |
Table 3. Estimated activation volume Ωv for dislocation nucleation of FeCrNi-C0, FeCrNi-C0.5 and FeNiCr-C1 MEA specimens from the strain-rate sensitivity m. Ω corresponds to the unit atomic volume of the FCC MEA specimens.
Alloy sample | Strain rate (s - 1) | m | Activation volume | Ωv |
---|---|---|---|---|
FeCrNi-C0 | 0.2 | 0.193±0.022 | 11.06±1.26 Å3 | 0.96±0.11 Ω |
0.04 | 13.08±1.49 Å3 | 1.13±0.12 Ω | ||
0.01 | 17.67±2.01 Å3 | 1.53±0.17 Ω | ||
FeCrNi-C0.5 | 0.2 | 0.177±0.052 | 11.29±3.31 Å3 | 0.97±0.28 Ω |
0.04 | 13.19±3.86 Å3 | 1.14±0.33 Ω | ||
0.01 | 19.36±5.68 Å3 | 1.67±0.42 Ω | ||
FeNiCr-C1 | 0.2 | 0.154±0.032 | 13.16±2.73 Å3 | 1.13±0.23 Ω |
0.04 | 14.11±2.93 Å3 | 1.21±0.25 Ω | ||
0.01 | 19.56±4.06 Å3 | 1.69±0.35 Ω |
Materials | Crystal structure | Dominant mechanism | Activation volume Ωv (Ω) | Refs. |
---|---|---|---|---|
Ni | FCC | Homogeneous | ∼1.0 | [ |
Cr | BCC | Heterogeneous | ∼0.62 | [ |
Mg | HCP | Heterogeneous | ∼0.2 | [ |
FeCoCrNiMn | FCC | Heterogeneous | ∼3.0 | [ |
Fe50Mn30Co10Cr10 | FCC | Homogeneous | ∼0.73 | [ |
Fe48.5Mn30Co10Cr10C0.5N1.0 | FCC | Homogeneous | ∼0.93 | |
TiZrHfNb | BCC | Heterogeneous | ∼3-5 | [ |
TiZrNbTa | BCC | Heterogeneous | ∼1.6 | [ |
TiZrNbTaMo | BCC | Heterogeneous | ∼1.7 | [ |
(TiZrHfNb)98O2 | BCC | Heterogeneous | ∼2.7 | [ |
(TiZrHfNb)98N2 | BCC | Heterogeneous | ∼2.4 | |
FeCrNi-C0 | FCC | Heterogeneous | ∼1.53 | This work |
FeCrNi-C0.5 | FCC | Heterogeneous | ∼1.67 | |
FeCrNi-C1 | FCC | Heterogeneous | ∼1.69 |
Table 4. Action volume of dislocation nucleation and the corresponding mechanism of dislocation nucleation characterized by nanoindentation in typical metallic materials.
Materials | Crystal structure | Dominant mechanism | Activation volume Ωv (Ω) | Refs. |
---|---|---|---|---|
Ni | FCC | Homogeneous | ∼1.0 | [ |
Cr | BCC | Heterogeneous | ∼0.62 | [ |
Mg | HCP | Heterogeneous | ∼0.2 | [ |
FeCoCrNiMn | FCC | Heterogeneous | ∼3.0 | [ |
Fe50Mn30Co10Cr10 | FCC | Homogeneous | ∼0.73 | [ |
Fe48.5Mn30Co10Cr10C0.5N1.0 | FCC | Homogeneous | ∼0.93 | |
TiZrHfNb | BCC | Heterogeneous | ∼3-5 | [ |
TiZrNbTa | BCC | Heterogeneous | ∼1.6 | [ |
TiZrNbTaMo | BCC | Heterogeneous | ∼1.7 | [ |
(TiZrHfNb)98O2 | BCC | Heterogeneous | ∼2.7 | [ |
(TiZrHfNb)98N2 | BCC | Heterogeneous | ∼2.4 | |
FeCrNi-C0 | FCC | Heterogeneous | ∼1.53 | This work |
FeCrNi-C0.5 | FCC | Heterogeneous | ∼1.67 | |
FeCrNi-C1 | FCC | Heterogeneous | ∼1.69 |
[1] |
H. Li, Y. Huang, J. Sun, Y. Lu, J. Mater. Sci. Technol 77 (2021) 187-195.
DOI URL |
[2] |
Z. An, S. Mao, Y. Liu, L. Wang, H. Zhou, B. Gan, Z. Zhang, X. Han, J. Mater. Sci. Technol. 79 (2021) 109-117.
DOI URL |
[3] |
M. Wang, Z. Li, D. Raabe, Acta Mater 147 (2018) 236-246.
DOI URL |
[4] |
P. Wu, K. Gan, D. Yan, Z. Fu, Z. Li, Corros. Sci. 183 (2021) 109341.
DOI URL |
[5] |
D.B. Miracle, O.N. Senkov, Acta Mater 122 (2017) 448-511.
DOI URL |
[6] |
Q.J. Li, H. Sheng, E. Ma, Nat. Commun. 10 (2019) 3563.
DOI URL |
[7] |
Y. Chen, Y. Fang, X. Fu, Y. Lu, S. Chen, H. Bei, Q. Yu, J. Mater. Sci. Technol. 73 (2021) 101-107.
DOI URL |
[8] |
Y. Tong, S. Zhao, H. Bei, T. Egami, Y. Zhang, F. Zhang, Acta Mater 183 (2020) 172-181.
DOI URL |
[9] |
C. Varvenne, A. Luque, W.A. Curtin, Acta Mater 118 (2016) 164-176.
DOI URL |
[10] |
Z. Wang, I. Baker, Z. Cai, S. Chen, J.D. Poplawsky, W. Guo, Acta Mater 120 (2016) 228-239.
DOI URL |
[11] |
P. Kwasniak, M. Muzyk, H. Garbacz, K.J. Kurzydlowski, Mater. Lett. 94 (2013) 92-94.
DOI URL |
[12] |
M. Ghasri-Khouzani, J.R. McDermid, Mater. Sci. Eng. A 621 (2015) 118-127.
DOI URL |
[13] |
J.Y. Ko, S.I. Hong, J. Alloy. Compd. 743 (2018) 115-125.
DOI URL |
[14] |
I. Moravcik, H. Hadraba, L. Li, I. Dlouhy, D. Raabe, Z. Li, Scr. Mater. 178 (2020) 391-397.
DOI URL |
[15] |
Y. Han, H. Li, H. Feng, K. Li, Y. Tian, Z. Jiang, J. Mater. Sci. Technol. 65 (2021) 210-215.
DOI |
[16] | W. Zhang, D. Yan, W. Lu, Z. Li, J. Alloy. Compd. 831 (2020) 1-10. |
[17] |
Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q. Zhang, H. Chen, H. Wang, J. Liu, K. An, Q. Zeng, T.-.G. Nieh, Z. Lu, Nature 563 (2018) 546-550.
DOI URL |
[18] |
J.K. Mason, A.C. Lund, C.A. Schuh, Phys. Rev. B 73 (2006) 054102.
DOI URL |
[19] | A.H.W. Ngan, L. Zuo, P.C. Wo, Proc. Math. Phys. Eng. 462 (2006) 1661-1681. |
[20] |
Q. Wei, S. Cheng, K.T. Ramesh, E. Ma, Mater. Sci. Eng. A 381 (2004) 71-79.
DOI URL |
[21] |
B.B. He, Z.Y. Liang, M.X. Huang, Scr. Mater. 150 (2018) 134-138.
DOI URL |
[22] |
K. Gan, S. Zhu, S. Jiang, Y. Huang, J. Alloy. Compd. 831 (2020) 154719.
DOI URL |
[23] |
S. Zhu, D. Yan, K. Gan, W. Lu, Z. Li, Scr. Mater. 191 (2021) 96-100.
DOI URL |
[24] |
Y.X. Ye, Z.P. Lu, T.G. Nieh, Scr. Mater. 130 (2017) 64-68.
DOI URL |
[25] |
S. Wang, J. Xu, J. Mater. Sci. Technol. 35 (2019) 812-816.
DOI URL |
[26] |
A. Fu, B. Liu, W. Lu, B. Liu, J. Li, Q. Fang, Z. Li, Y. Liu, Scr. Mater. 186 (2020) 381-386.
DOI URL |
[27] |
K. Gan, D. Yan, S. Zhu, Z. Li, Acta Mater 206 (2021) 116633.
DOI URL |
[28] |
Z. Zong, J. Lou, O.O. Adewoye, A .A. Elmustafa, F. Hammad, W.O. Soboyejo, Mater. Sci. Eng. A 434 (2006) 178-187.
DOI URL |
[29] |
K. Durst, V. Maier, Curr. Opin. Solid State Mater. Sci. 19 (2015) 340-353.
DOI URL |
[30] |
R. Gu, A.H.W. Ngan, J. Mech. Phys. Solids 61 (2013) 1531-1542.
DOI URL |
[31] |
Q. Wei, J. Mater. Sci. 42 (2007) 1709-1727.
DOI URL |
[32] |
Y.M. Wang, E. Ma, Appl. Phys. Lett. 83 (2003) 3165.
DOI URL |
[33] |
W.D. Nix, H. Gao, J. Mech. Phys. Solids 46 (1998) 411-425.
DOI URL |
[34] |
D. Wu, J.S.C. Jang, T.G. Nieh, Intermetallics 68 (2016) 118-127.
DOI URL |
[35] |
H. Guo, B. Lu, J. Luo, Electrochem. Commun. 8 (2006) 1092-1098.
DOI URL |
[36] | K. Durst, B. Backes, O. Franke, M. Göken, Acta Mater 54 (2006) 2547-2555. |
[37] |
B.B. He, M.X. Huang, Z.Y. Liang, A.H.W. Ngan, H.W. Luo, J. Shi, W.Q. Cao, H. Dong, Scr. Mater. 69 (2013) 215-218.
DOI URL |
[38] |
K. Sekido, T. Ohmura, T. Sawaguchi, M. Koyama, H.W. Park, K. Tsuzaki, Scr. Mater 65 (2011) 942-945.
DOI URL |
[39] |
L. Wang, H. Bei, T.L. Li, Y.F. Gao, E.P. George, T.G. Nieh, Scr. Mater. 65 (2011) 179-182.
DOI URL |
[40] |
C. Zhu, Z.P. Lu, T.G. Nieh, Acta Mater 61 (2013) 2993-3001.
DOI URL |
[41] |
M. Schneider, G. Laplanche, Acta Mater 204 (2021) 116470.
DOI URL |
[42] |
T.H. Ahn, S.B. Lee, K.T. Park, K.H. Oh, H.N. Han, Mater. Sci. Eng. A 598 (2014) 56-61.
DOI URL |
[43] |
S. Mukherjee, T. Khraishi, Y.L. Shen, Mol. Simul. 32 (2006) 651-656.
DOI URL |
[44] |
D. Wu, T.G. Nieh, Mater. Sci. Eng. A 609 (2014) 110-115.
DOI URL |
[45] |
A.H.W. Ngan, L. Zuo, P.C. Wo, Scr. Mater. 54 (2006) 589-593.
DOI URL |
[46] |
Y. Zhao, J.M. Park, J.i. Jang, U. Ramamurty, Acta Mater 202 (2021) 124-134.
DOI URL |
[47] |
C.A. Schuh, T.G. Nieh, Y. Kawamura, J. Mater. Res. 17 (2011) 1651-1654.
DOI URL |
[48] |
Y. Xiao, B. Gan, A.S. Sologubenko, R. Spolenak, J.M. Wheeler, Mater. Sci. Eng. A 800 (2021) 140266.
DOI URL |
[49] |
Y. Gao, H. Bei, Prog. Mater. Sci. 82 (2016) 118-150.
DOI URL |
[50] |
D. Wu, J.R. Morris, T.G. Nieh, Scr. Mater. 94 (2015) 52-55.
DOI URL |
[51] |
H. Somekawa, C.A. Schuh, Acta Mater 59 (2011) 7554-7563.
DOI URL |
[52] |
Y. Ye, B. Ouyang, C. Liu, G. Duscher, T. Nieh, Acta Mater 199 (2020) 413-424.
DOI URL |
[53] |
K. Nibur, D. Bahr, B. Somerday, Acta Mater 54 (2006) 2677-2684.
DOI URL |
[54] |
B. Yin, S. Yoshida, N. Tsuji, W.A. Curtin, Nat. Commun. 11 (2020) 2507.
DOI URL |
[55] |
R. Zhang, S. Zhao, J. Ding, Y. Chong, T. Jia, C. Ophus, M. Asta, R.O. Ritchie, A. M. Minor, Nature 581 (2020) 283-287.
DOI URL |
[56] |
F. Otto. A. Dlouhý, K.G. Pradeep, M. Kub ˇenová, D. Raabe, G. Eggeler, E.P. George, Acta Mater. 112 (2016) 40-52.
DOI URL |
[57] |
M. Kawamura, M. Asakura, N.L. Okamoto, K. Kishida, H. Inui, E.P. George, Acta Mater. 203 (2021) 116454.
DOI URL |
[58] | L. Li, R.D. Kamachali, Z. Li, Z. Zhang, Phys. Rev. Mater. 4 (2020) 053603. |
[59] |
F. Habiyaremye, A. Guitton, F. Schäfer, F. Scholz, M. Schneider, J. Frenzel, G. Laplanche, N. Maloufi, Mater. Sci. Eng. A 817 (2021) 141364.
DOI URL |
[60] |
R.D.K. Misra, Z. Zhang, Z. Jia, M.C. Somani, L.P. Karjalainen, Scr. Mater 63 (2010) 1057-1060.
DOI URL |
[61] |
I. Salehinia, D.F. Bahr, Scr. Mater. 66 (2012) 339-342.
DOI URL |
[1] | Yeonju Oh, Won-Seok Ko, Nojun Kwak, Jae-il Jang, Takahito Ohmura, Heung Nam Han. Small-scale analysis of brittle-to-ductile transition behavior in pure tungsten [J]. J. Mater. Sci. Technol., 2022, 105(0): 242-258. |
[2] | Yu-qin Zhang, Wei-li Cheng, Hui Yu, Hong-xia Wang, Xiao-feng Niu, Li-fei Wang, Hang Li. Unveiling the twinning and dynamic recrystallization behavior and the resultant texture evolution in the extruded Mg-Bi binary alloys during hot compression [J]. J. Mater. Sci. Technol., 2022, 105(0): 274-285. |
[3] | Jiangwei Wang, Anik H.M. Faisal, Xiyao Li, Youran Hong, Qi Zhu, Hongbin Bei, Ze Zhang, Scott X Mao, Christopher R. Weinberger. Discrete twinning dynamics and size-dependent dislocation-to twin transition in body-centred cubic tungsten [J]. J. Mater. Sci. Technol., 2022, 106(0): 33-40. |
[4] | Jinlong Su, Xiankun Ji, Jin Liu, Jie Teng, Fulin Jiang, Dingfa Fu, Hui Zhang. Revealing the decomposition mechanisms of dislocations and metastable α' phase and their effects on mechanical properties in a Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2022, 107(0): 136-148. |
[5] | Yipeng Li, Guang Ran, Xinyi Liu, Qing Han, Xiuyin Huang, Yifan Ding. In-situ TEM investigation of dislocation loop reaction and irradiation hardening in H2+-He+ dual-beam irradiated Mo [J]. J. Mater. Sci. Technol., 2022, 107(0): 14-25. |
[6] | C.Z. Fang, H.C. Basoalto, M.J. Anderson, H.Y. Li, S.J. Williams, P. Bowen. A numerical study on the influence of grain boundary oxides on dwell fatigue crack growth of a nickel-based superalloy✩ [J]. J. Mater. Sci. Technol., 2022, 104(0): 224-235. |
[7] | Huaxin Hu, Xuemei Liu, Jinghong Chen, Hao Lu, Chao Liu, Haibin Wang, Junhua Luan, Zengbao Jiao, Yong Liu, Xiaoyan Song. High-temperature mechanical behavior of ultra-coarse cemented carbide with grain strengthening [J]. J. Mater. Sci. Technol., 2022, 104(0): 8-18. |
[8] | Bijun Xie, Zhenxiang Yu, Haiyang Jiang, Bin Xu, Chunyang Wang, Jianyang Zhang, Mingyue Sun, Dianzhong Li, Yiyi Li. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding [J]. J. Mater. Sci. Technol., 2022, 96(0): 199-211. |
[9] | Luqing Cui, Cheng-Han Yu, Shuang Jiang, Xiaoyu Sun, Ru Lin Peng, Jan-Erik Lundgren, Johan Moverare. A new approach for determining GND and SSD densities based on indentation size effect: An application to additive-manufactured Hastelloy X [J]. J. Mater. Sci. Technol., 2022, 96(0): 295-307. |
[10] | Jiayong Zhang, Hongwu Zhang, Qian Li, Lizi Cheng, Hongfei Ye, Yonggang Zheng, Jian Lu. The physical origin of observed repulsive forces between general dislocations and twin boundaries in FCC metals: An atom-continuum coupling study [J]. J. Mater. Sci. Technol., 2022, 109(0): 221-227. |
[11] | Y.K. Xiao, H. Chen, Z.Y. Bian, T.T. Sun, H. Ding, Q. Yang, Y. Wu, Q. Lian, Z. Chen, H.W. Wang. Enhancing strength and ductility of AlSi10Mg fabricated by selective laser melting by TiB2 nanoparticles [J]. J. Mater. Sci. Technol., 2022, 109(0): 254-266. |
[12] | Xuehui Yan, Peter K. Liaw, Yong Zhang. Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates [J]. J. Mater. Sci. Technol., 2022, 110(0): 109-116. |
[13] | Mingxu Wu, Shubin Wang, Fei Xiao, Guoliang Zhu, Chao Yang, Da Shu, Baode Sun. Dislocation glide and mechanical twinning in a ductile VNbTi medium entropy alloy [J]. J. Mater. Sci. Technol., 2022, 110(0): 210-215. |
[14] | T. Fang X., K. Li Z., F. Wang Y., M. Ruiz, L. Ma X., Y. Wang H., Y. Zhu, R. Schoell, C. Zheng, D. Kaoumi, T. Zhu Y.. Achieving high hetero-deformation induced (HDI) strengthening and hardening in brass by dual heterostructures [J]. J. Mater. Sci. Technol., 2022, 98(0): 244-247. |
[15] | Bijin Zhou, Leyun Wang, Jinhui Wang, Alireza Maldar, Gaoming Zhu, Hailong Jia, Peipeng Jin, Xiaoqin Zeng, Yanjun Li. Dislocation behavior in a polycrystalline Mg-Y alloy using multi-scale characterization and VPSC simulation [J]. J. Mater. Sci. Technol., 2022, 98(0): 87-98. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||