J. Mater. Sci. Technol. ›› 2022, Vol. 112: 195-201.DOI: 10.1016/j.jmst.2021.09.058
• Research Article • Previous Articles Next Articles
Wenjie Lua,b, Xian Luoa,*(), Dou Ninga, Miao Wangc, Chao Yanga, Miaoquan Lia, Yanqing Yanga,b,*(
), Pengtao Lia, Bin Huanga
Received:
2021-07-22
Revised:
2021-09-07
Accepted:
2021-09-08
Published:
2021-12-26
Online:
2021-12-26
Contact:
Xian Luo,Yanqing Yang
About author:
yqyang@nwpu.edu.cn (Y. Yang).Wenjie Lu, Xian Luo, Dou Ning, Miao Wang, Chao Yang, Miaoquan Li, Yanqing Yang, Pengtao Li, Bin Huang. Excellent strength-ductility synergy properties of gradient nano-grained structural CrCoNi medium-entropy alloy[J]. J. Mater. Sci. Technol., 2022, 112: 195-201.
Fig. 2. Microstructure investigation for CG CrCoNi sample processed by HESP treatment, (a)-(c) representative cross-sectional TEM BF image at topmost surface, ~100 μm-deep layer and center layer, respectively, (a) NG structure, inset is the corresponding SADP, (b) twinned UFG structure, the red arrows indicate twin structure, (c) deformation CG structure, the yellow arrows indicate high-density dislocations, (d) and (e) schematic of plate tensile sample processed by HESP, showing two GNG layers sandwiching a deformation CG core, (f) average grain size distribution from center to surface layers.
Fig. 3. Mechanical properties of CG and GNG CrCoNi MEA samples: (a) hardness distributions from surface to center, (b) typical engineering stress-strain curves, and (c) work-hardening rate curves, and the properties of an UFG CrCoNi MEA sample [15] was presented for comparison.
Fig. 4. The comparison results of current GNG CrCoNi MEA with previous literatures about CrCoNi and CrCoNi-based MEAs by different strengthening methods [[32], [33], [34], [35], [36]].
Alloys | Processinga | Microstructure | σy (MPa) | σUTS (MPa) | ε (%) | Refs. |
---|---|---|---|---|---|---|
CrCoNi | AC+1473 K/10 h/WQ+CR(80%)+973 K/1 h/WQ | FCC,GS=1.3 μm | 750 | 1096 | 41.2 | Present work |
AC+1473 K/10 h/WQ+ CR(80%)+973 K/1 h/WQ+HESP | FCC,GNG | 1215 | 1524 | 23 | ||
AC+CR(90%)+1473 K/12 h/WQAC+CR(90%)+1473 K/12 h/WQ+HPT+1173 K/20 min/WQAC+CR(90%)+1473 K/12 h/WQ+HPT+973 K/30 min/WQAC+CR(92%)+1473 K/24 h/WQ+1198 K/1 h/WQAC+1472 K/24 h/WQ+CR(60%)+1073 K/1 hMA+SPSAC+HPTAC+HPT+1073 K/1 h/WQAC+1473 K/12 h/WQ+HF1323 K(90%)+CR(95%)+873 K/1 h/WQ | FCC,GS=111 μmFCC,GS=1.47 μmFCC,GS=0.199 μmFCC,GS=13 μmFCC,GS=∼5-50 μmFCC+BCCFCC,GS=50 nmFCC,GS=3.3 μmFCC, HGS | 27038699329843565219015121150 | 5876801080863875102420958361270 | 8058.620.8677525.94.73731 | [ | |
SLM | HM | 651 | 907 | 35.8 | [ | |
(CoCrNi)92Al6Ta2 | AC+1498 K/24 h/WQ+CR(70%)+1423 K/3 min/WQ | FCC,GS=8 μm | 595 | 998 | 52 | [ |
(CoCrNi)94Al3Ti3 | CR(66%)+1433 K/3 min +1073 K/2 h/WQ | FCC+γ′,GS=67 μm | 750 | 1300 | 44 | [ |
Table 1. Alloys, processing, microstructure and tensile properties of CrCoNi and CrCoNi-based MEAs obtained from previous works and present work.
Alloys | Processinga | Microstructure | σy (MPa) | σUTS (MPa) | ε (%) | Refs. |
---|---|---|---|---|---|---|
CrCoNi | AC+1473 K/10 h/WQ+CR(80%)+973 K/1 h/WQ | FCC,GS=1.3 μm | 750 | 1096 | 41.2 | Present work |
AC+1473 K/10 h/WQ+ CR(80%)+973 K/1 h/WQ+HESP | FCC,GNG | 1215 | 1524 | 23 | ||
AC+CR(90%)+1473 K/12 h/WQAC+CR(90%)+1473 K/12 h/WQ+HPT+1173 K/20 min/WQAC+CR(90%)+1473 K/12 h/WQ+HPT+973 K/30 min/WQAC+CR(92%)+1473 K/24 h/WQ+1198 K/1 h/WQAC+1472 K/24 h/WQ+CR(60%)+1073 K/1 hMA+SPSAC+HPTAC+HPT+1073 K/1 h/WQAC+1473 K/12 h/WQ+HF1323 K(90%)+CR(95%)+873 K/1 h/WQ | FCC,GS=111 μmFCC,GS=1.47 μmFCC,GS=0.199 μmFCC,GS=13 μmFCC,GS=∼5-50 μmFCC+BCCFCC,GS=50 nmFCC,GS=3.3 μmFCC, HGS | 27038699329843565219015121150 | 5876801080863875102420958361270 | 8058.620.8677525.94.73731 | [ | |
SLM | HM | 651 | 907 | 35.8 | [ | |
(CoCrNi)92Al6Ta2 | AC+1498 K/24 h/WQ+CR(70%)+1423 K/3 min/WQ | FCC,GS=8 μm | 595 | 998 | 52 | [ |
(CoCrNi)94Al3Ti3 | CR(66%)+1433 K/3 min +1073 K/2 h/WQ | FCC+γ′,GS=67 μm | 750 | 1300 | 44 | [ |
Fig. 5. (a) LUR tensile test results of CG and GNG CrCoNi MEA sample, (b) an enlarged view for comparison of hysteresis loops, and (c) calculated HDI hardening of GNG CrCoNi MEA sample, where σr and σu are reloading yield stress and unloading yield stress of an LUR loop [39].
Fig. 6. Representative deformation characters in tensile tested GNG sample by TEM investigation at topest surface, ~100 μm-deep layer and center layer, respectively, (a) a deformed NG in topmost layer, (b) a HRTEM image showing deformation-induced NTs with extended SFs, (c) a deformed twinned-UFG in ~100 μm-deep layer, (d) a HRTEM image showing the enlarge view of different DTs and SFs structures, (e) a deformed CG in center layer, the inset SADP indicate the DTs structure, (f) a HRTEM image showing the thermal twin evolve into incoherent HAGB, the inset is the corresponding FFT.
Fig. 7. Schematics of microstructure evolution in GNG sample with increasing applied stress, which exhibiting a dynamical reinforced heterogeneous grain structure during tensile process, (a) original GNG structure: (b) heterogeneous deformation results in the HDI stress in CG structure, and (c) a more heterogeneous structure forms resulting from DTs and/or SFs separating grains.
[1] |
Z. Zhang, H. Sheng, Z. Wang, B. Gludovatz, Z. Zhang, E.P. George, Q. Yu, S. X. Mao, R.O. Ritchie, Nat. Commun. 8 (2017) 14390.
DOI URL |
[2] |
H.Y. Diao, R. Feng, K.A. Dahmen, P.K. Liaw, Curr. Opin. Solid State Mater. Sci. 21 (2017) 252-266.
DOI URL |
[3] | M.C. Gao, J.W. Yeh, P.K. Liaw, Y. Zhang High-Entropy Alloys: Fundamentals and Applications, Springer, 2016. |
[4] | Y. Zhou, D. Zhou, X. Jin, L. Zhang, X. Du, B. Li, Sci. Rep. 8 (2018) 1-9. |
[5] |
D.B. Miracle, O.N. Senkov, Acta Mater 122 (2017) 448-511.
DOI URL |
[6] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153-1158.
DOI PMID |
[7] |
B. Gludovatz, A. Hohenwarter, K.V. Thurston, H. Bei, Z. Wu, E.P. George, R.O. Ritchie, Nat. Commun. 7 (2016) 10602.
DOI PMID |
[8] |
M.G. Poletti, G. Fiore, F. Gili, D. Mangherini, L. Battezzati, Mater. Des. 115 (2017) 247-254.
DOI URL |
[9] |
H. Luo, S.S. Sohn, W. Lu, L. Li, X. Li, C.K. Soundararajan, W. Krieger, Z. Li, D. Raabe, Nat. Commun. 11 (2020) 3081.
DOI URL |
[10] | P. Muangtong, A. Rodchanarowan, D. Chaysuwan, N. Chanlek, R. Goodall, Cor- ros. Sci. 172 (2020) 108740. |
[11] |
C. Lu, L. Niu, N. Chen, K. Jin, T. Yang, P. Xiu, Y. Zhang, F. Gao, H. Bei, S. Shi, M. R. He, I.M. Robertson, W.J. Weber, L. Wang, Nat. Commun. 7 (2016) 13564.
DOI URL |
[12] |
F. Granberg, K. Nordlund, M.W. Ullah, K. Jin, C. Lu, H. Bei, L.M. Wang, F. Djurabekova, W.J. Weber, Y. Zhang, Phys. Rev. Lett. 116 (2016) 135504.
DOI URL |
[13] |
Y. Tong, D. Chen, B. Han, J. Wang, R. Feng, T. Yang, C. Zhao, Y.L. Zhao, W. Guo, Y. Shimizu, C.T. Liu, P.K. Liaw, K. Inoue, Y. Nagai, A. Hu, J.J. Kai, Acta Mater 165 (2019) 228-240.
DOI |
[14] |
D.G. Kim, Y.H. Jo, J. Yang, W.M. Choi, H.S. Kim, B.J. Lee, S.S. Sohn, S. Lee, Scr. Mater. 171 (2019) 67-72.
DOI URL |
[15] |
S. Yoshida, T. Bhattacharjee, Y. Bai, N. Tsuji, Scr. Mater. 134 (2017) 33-36.
DOI URL |
[16] |
G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, E.P. George, Acta Mater 128 (2017) 292-303.
DOI URL |
[17] |
C.-.C. Juan, M.-.H. Tsai, C.-.W. Tsai, W.-.L. Hsu, C.-.M. Lin, S.-.K. Chen, S.-.J. Lin, J.-.W. Yeh, Mater. Lett. 184 (2016) 200-203.
DOI URL |
[18] |
P. Sathiyamoorthi, J. Basu, S. Kashyap, K.G. Pradeep, R.S. Kottada, Mater. Des. 134 (2017) 426-433.
DOI URL |
[19] |
Y.L. Zhao, T. Yang, Y. Tong, J. Wang, J.H. Luan, Z.B. Jiao, D. Chen, Y. Yang, A. Hu, C. T. Liu, J.J. Kai, Acta Mater 138 (2017) 72-82.
DOI URL |
[20] |
W. Lu, X. Luo, Y. Yang, K. Yan, B. Huang, P. Li, Mater. Sci. Eng. A 780 (2020) 139218.
DOI URL |
[21] |
W. Lu, X. Luo, Y. Yang, B. Huang, P. Li, Intermetallics 129 (2021) 107036.
DOI URL |
[22] |
J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, Acta Mater 102 (2016) 187-196.
DOI URL |
[23] |
T. Yang, Y.L. Zhao, B.X. Cao, J.J. Kai, C.T. Liu, Scr. Mater. 183 (2020) 39-44.
DOI URL |
[24] |
E. Ma, X. Wu, Nat. Commun. 10 (2019) 5623.
DOI URL |
[25] | M. Yang, D. Yan, F. Yuan, P. Jiang, E. Ma, X. Wu, Proc. Natl. Acad. Sci. USA 115 (2018) 7224-7229. |
[26] |
Y. Zhu, X. Wu, Mater. Res. Lett. 7 (2019) 393-398.
DOI URL |
[27] |
Y. Ma, F. Yuan, M. Yang, P. Jiang, E. Ma, X. Wu, Acta Mater 148 (2018) 407-418.
DOI URL |
[28] | Z. Cheng, H. Zhou, Q. Lu, H. Gao, L. Lu, Science 362 (2018) 6414. |
[29] |
T.H. Fang, W.L. Li, N.R. Tao, K. Lu, Science 331 (2011) 1587-1590.
DOI PMID |
[30] |
Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534 (2016) 227-230.
DOI URL |
[31] |
Y.F. Wang, C.X. Huang, X.T. Fang, H.W. Höppel M. Göken, Y.T. Zhu, Scr. Mater. 174 (2020) 19-23.
DOI URL |
[32] |
J. Miao, C.E. Slone, T.M. Smith, C. Niu, H. Bei, M. Ghazisaeidi, G.M. Pharr, M. J. Mills, Acta Mater 132 (2017) 35-48.
DOI URL |
[33] |
I. Moravcik, J. Cizek, Z. Kovacova, J. Nejezchlebova, M. Kitzmantel, E. Neubauer, I. Kubena, V. Hornik, I. Dlouhy, Mater. Sci. Eng. A 701 (2017) 370-380.
DOI URL |
[34] |
B. Schuh, B. Volker, J. Todt, K.S. Kormout, N. Schell, A. Hohenwarter, Materials 11 (2018) 662.
DOI URL |
[35] |
B. Han, C. Zhang, K. Feng, Z. Li, X. Zhang, Y. Shen, X. Wang, H. Kokawa, R. Li, Z. Wang, P.K. Chu, Mater. Sci. Eng. A 820 (2021) 141545.
DOI URL |
[36] |
D.D. Zhang, H. Wang, J.Y. Zhang, H. Xue, G. Liu, J. Sun, J. Mater. Sci. Technol. 87 (2021) 184-195.
DOI |
[37] |
W. Lu, X. Luo, Y. Yang, B. Huang, Mater. Chem. Phys. 251 (2020) 123073.
DOI URL |
[38] |
Z. An, S. Mao, Y. Liu, H. Zhou, Y. Zhai, Z. Tian, C. Liu, Z. Zhang, X. Han, J. Mater. Sci. Technol. 92 (2021) 195-207.
DOI URL |
[39] |
M. Yang, Y. Pan, F. Yuan, Y. Zhu, X. Wu, Mater. Res. Lett. 4 (2016) 145-151.
DOI URL |
[40] | X. Wu, M. Yang, F. Yuan, G. Wu, Y. Wei, X. Huang, Y. Zhu, Proc. Natl. Acad. Sci. USA 112 (2015) 14501-14505. |
[41] |
C.W. Sinclair, G. Saada, J.D. Embury, Philos. Mag. 86 (2006) 4081-4098.
DOI URL |
[42] |
Y.B. Wang, X.Z. Liao, Y.H. Zhao, E.J. Lavernia, S.P. Ringer, Z. Horita, T.G. Langdon, Y.T. Zhu, Mater. Sci. Eng. A 527 (2010) 4959-4966.
DOI URL |
[43] | S.F. Liu, Y. Wu, H.T. Wang, J.Y. He, J.B. Liu, C.X. Chen, X.J. Liu, H. Wang, Z.P. Lu, Intermetallics (2017) 1-5. |
[44] |
Y.H. Zhang, Y. Zhuang, A. Hu, J.J. Kai, C.T. Liu, Scr. Mater. 130 (2017) 96-99.
DOI URL |
[45] |
C.X. Huang, Y.F. Wang, X.L. Ma, S. Yin, H.W. Höppel, M. Göken, X.L. Wu, H.J. Gao, Y.T. Zhu, Mater. Today 21 (2018) 713-719.
DOI URL |
[46] |
Z.H. Cong, N. Jia, X. Sun, Y. Ren, J. Almer, Y.D. Wang, Metall. Mater. Trans. A 40 (2009) 1383-1387.
DOI URL |
[47] | X. Wu, P. Jiang, L. Chen, F. Yuan, Y.T. Zhu, in: Proc. Natl. Acad. Sci. USA, 111, 2014, pp. 7197-7201. |
[48] |
X. Wu, Y. Zhu, Mater. Res. Lett. 5 (2017) 527-532.
DOI URL |
[49] |
X. Liu, F. Yuan, Y. Zhu, X. Wu, Scr. Mater. 150 (2018) 57-60.
DOI URL |
[50] |
Y. Wang, M. Yang, X. Ma, M. Wang, K. Yin, A. Huang, C. Huang, Mater. Sci. Eng. A 727 (2018) 113-118.
DOI URL |
[51] |
M.X. Yang, F.P. Yuan, Q.G. Xie, Y.D. Wang, E. Ma, X.L. Wu, Acta Mater 109 (2016) 213-222.
DOI URL |
[52] |
Q. Han, A. Asgari, P.D. Hodgson, N. Stanford, Mater. Sci. Eng. A 611 (2014) 90-99.
DOI URL |
[1] | Shiwei Li, Jinglong Li, Junmiao Shi, Yu Peng, Xuan Peng, Xianjun Sun, Feng Jin, Jiangtao Xiong, Fusheng Zhang. Microstructure and mechanical properties of transient liquid phase bonding DD5 single-crystal superalloy to CrCoNi-based medium-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 140-150. |
[2] | Xiaoru Liu, Hao Feng, Jing Wang, Xuefei Chen, Ping Jiang, Fuping Yuan, Huabing Li, En Ma, Xiaolei Wu. Mechanical property comparisons between CrCoNi medium-entropy alloy and 316 stainless steels [J]. J. Mater. Sci. Technol., 2022, 108(0): 256-269. |
[3] | Hyun Chung, Dae Woong Kim, Woo Jin Cho, Heung Nam Han, Yuji Ikeda, Shoji Ishibashi, Fritz Körmann, Seok Su Sohn. Effect of solid-solution strengthening on deformation mechanisms and strain hardening in medium-entropy V1-xCrxCoNi alloys [J]. J. Mater. Sci. Technol., 2022, 108(0): 270-280. |
[4] | Muhammad Akmal, Hyun Woo Seong, Ho Jin Ryu. Mo and Ta addition in NbTiZr medium entropy alloy to overcome tensile yield strength-ductility trade-off [J]. J. Mater. Sci. Technol., 2022, 109(0): 176-185. |
[5] | Mingxu Wu, Shubin Wang, Fei Xiao, Guoliang Zhu, Chao Yang, Da Shu, Baode Sun. Dislocation glide and mechanical twinning in a ductile VNbTi medium entropy alloy [J]. J. Mater. Sci. Technol., 2022, 110(0): 210-215. |
[6] | Gang Niu, Hatem S. Zurob, R.D.K. Misra, Huibin Wu, Yu Zou. Strength-ductility synergy in a 1.4 GPa austenitic steel with a heterogeneous lamellar microstructure [J]. J. Mater. Sci. Technol., 2022, 106(0): 133-138. |
[7] | Wenjie Lu, Kang Yan, Xian Luo, Yuetang Wang, Le Hou, Pengtao Li, Bin Huang, Yanqing Yang. Superb strength and ductility balance of a Co-free medium-entropy alloy with dual heterogeneous structures [J]. J. Mater. Sci. Technol., 2022, 98(0): 197-204. |
[8] | T. Fang X., K. Li Z., F. Wang Y., M. Ruiz, L. Ma X., Y. Wang H., Y. Zhu, R. Schoell, C. Zheng, D. Kaoumi, T. Zhu Y.. Achieving high hetero-deformation induced (HDI) strengthening and hardening in brass by dual heterostructures [J]. J. Mater. Sci. Technol., 2022, 98(0): 244-247. |
[9] | D.D. Zhang, H. Wang, J.Y. Zhang, H. Xue, G. Liu, J. Sun. Achieving excellent strength-ductility synergy in twinned NiCoCr medium-entropy alloy via Al/Ta co-doping [J]. J. Mater. Sci. Technol., 2021, 87(0): 184-195. |
[10] | Muhammad Akmal, Ahtesham Hussain, Muhammad Afzal, Young Ik Lee, Ho Jin Ryu. Systematic study of (MoTa)xNbTiZr medium- and high-entropy alloys for biomedical implants- In vivo biocompatibility examination [J]. J. Mater. Sci. Technol., 2021, 78(0): 183-191. |
[11] | Yin Du, Xuhui Pei, Zhaowu Tang, Fan Zhang, Qing Zhou, Haifeng Wang, Weimin Liu. Mechanical and tribological performance of CoCrNiHfx eutectic medium-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 90(0): 194-204. |
[12] | Dae Cheol Yang, Yong Hee Jo, Yuji Ikeda, Fritz Körmann, Seok Su Sohn. Effects of cryogenic temperature on tensile and impact properties in a medium-entropy VCoNi alloy [J]. J. Mater. Sci. Technol., 2021, 90(0): 159-167. |
[13] | Jing Li, Mengjie Zhao, Li Jin, Fenghua Wang, Shuai Dong, Jie Dong. Simultaneously improving strength and ductility through laminate structure design in Mg-8.0Gd-3.0Y-0.5Zr alloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 195-200. |
[14] | Ran Wei, Kaisheng Zhang, Liangbin Chen, Zhenhua Han, Tan Wang, Chen Chen, Jianzhong Jiang, Tingwei Hu, Fushan Li. Novel Co-free high performance TRIP and TWIP medium-entropy alloys at cryogenic temperatures [J]. J. Mater. Sci. Technol., 2020, 57(0): 153-158. |
[15] | Hao Feng, Huabing Li, Xiaolei Wu, Zhouhua Jiang, Si Zhao, Tao Zhang, Dake Xu, Shucai Zhang, Hongchun Zhu, Binbin Zhang, Muxin Yang. Effect of nitrogen on corrosion behaviour of a novel high nitrogen medium-entropy alloy CrCoNiN manufactured by pressurized metallurgy [J]. J. Mater. Sci. Technol., 2018, 34(10): 1781-1790. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||