J. Mater. Sci. Technol. ›› 2022, Vol. 112: 184-194.DOI: 10.1016/j.jmst.2021.11.005
• Research Article • Previous Articles Next Articles
Jiangtao Yua, Shucai Zhanga, Huabing Lia,b,*(), Zhouhua Jianga, Hao Fenga, Panpan Xuc, Peide Hanc
Received:
2021-11-08
Revised:
2021-11-19
Accepted:
2021-11-21
Published:
2021-12-11
Online:
2021-12-11
Contact:
Huabing Li
About author:
* E-mail address: lihb@smm.neu.edu.cn (H. Li).1 These authors contributed equally to this work.
Jiangtao Yu, Shucai Zhang, Huabing Li, Zhouhua Jiang, Hao Feng, Panpan Xu, Peide Han. Influence mechanism of boron segregation on the microstructure evolution and hot ductility of super austenitic stainless steel S32654[J]. J. Mater. Sci. Technol., 2022, 112: 184-194.
Steel | C | Si | Mn | P | S | Cr | Ni | Mo | Cu | N | B | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|
B0 | 0.013 | 0.38 | 2.95 | 0.005 | 0.002 | 24.48 | 22.51 | 7.32 | 0.48 | 0.50 | 0 | bal. |
B20 | 0.013 | 0.39 | 2.97 | 0.005 | 0.002 | 24.46 | 22.53 | 7.33 | 0.49 | 0.50 | 0.0020 | bal. |
Table 1. Chemical compositions (wt.%) of the two S32654 steels used in this study.
Steel | C | Si | Mn | P | S | Cr | Ni | Mo | Cu | N | B | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|
B0 | 0.013 | 0.38 | 2.95 | 0.005 | 0.002 | 24.48 | 22.51 | 7.32 | 0.48 | 0.50 | 0 | bal. |
B20 | 0.013 | 0.39 | 2.97 | 0.005 | 0.002 | 24.46 | 22.53 | 7.33 | 0.49 | 0.50 | 0.0020 | bal. |
Fig. 5. Cross-section microstructure near the fracture surface of S32654 steels strained at different temperatures: (a) B0-950 °C, (b) B0-1000 °C, (c) B0-1150 °C, (d) B0-1250 °C, (e) B20-950 °C, (f) B20-1000 °C, (g) B20-1150 °C and (h) B20-1250 °C.
Fig. 7. SEM and TEM images of cross-section microstructures near the fracture surface of S32654 steels strained at different temperatures: (a) B0-950 °C, (b) B0-1000 °C, (c) σ phase in B0-950 °C, (d) B20-950 °C, (e) B20-1000 °C and (f) σ phase in B20-950 °C.
Fig. 9. (a-f) Representative inverse pole maps and grain average misorientation maps of microstructures near the fracture surface in the B0 and B20 steels strained at different temperatures (the black arrows indicate the tensile direction), (g) color code and (h) volume fraction of different types of grains.
Fig. 11. APT analysis of element distribution across the GB in the B20 steel deformed at 950 °C: (a) 3D atomic distribution maps and (b) 1D concentration profile of elements.
Fig. 12. (a) Simulational models of FCC-Fe Σ5(210) structure (1-7 indicate the sites of B and Mo atoms), (b) segregation energy of B and Mo atom at different sites, (c) separation energy and (d) theoretical tensile strength.
System-Σ5(210) | Fracture energy (J/m2) | Theoretical tensile peak stress (GPa) |
---|---|---|
Fe-Mo | 5.93 | 34.99 |
Fe-Mo (B) | 6.10 | 36.80 |
Table 2. Fracture energy and theoretical tensile peak stress for different systems.
System-Σ5(210) | Fracture energy (J/m2) | Theoretical tensile peak stress (GPa) |
---|---|---|
Fe-Mo | 5.93 | 34.99 |
Fe-Mo (B) | 6.10 | 36.80 |
[1] | B. Wallén, M. Liljas, P. Stenvall, Mater. Corros. 44 (1993) 83-88. |
[2] |
S.C. Zhang, H.B. Li, Z.H. Jiang, B.B. Zhang, Z.X. Li, J.X. Wu, H. Feng, H.C. Zhu, F. Duan, Corros. Sci. 163 (2020) 108295.
DOI URL |
[3] |
S. Heino, B. Karlsson, Acta Mater. 49 (2001) 339-351.
DOI URL |
[4] |
L. Wang, Z.Y. Li, X. Hu, B. Lv, C. Chen, F.C. Zhang, J. Mater. Res. Technol. 13 (2021) 618-634.
DOI URL |
[5] | M. Svoboda, A. Kroupa, J. Sopoušek, J. Vřešt’ál, P. Miodownik, Z. Metallkd. 95 (2004) 1025-1030. |
[6] |
B.B. Zhang, H.B. Li, S.C. Zhang, Z.H. Jiang, Y. Lin, H. Feng, H.C. Zhu, Mater. Charact. 175 (2021) 111096.
DOI URL |
[7] |
Y.H. Zhou, Y.C. Liu, X.S. Zhou, C.X. Liu, J.X. Yu, Y. Huang, H.J. Li, W.Y. Li, J. Mater. Sci. Technol. 33 (2017) 1448-1456.
DOI URL |
[8] | A.C. Stauffer, D.A. Koss, J.B. McKirgan, McKirgan, Metall. Mater. Trans. A 35 (2004) 1317-1324. |
[9] |
Y. Han, G.W. Liu, D.N. Zou, R. Liu, G.J. Qiao, Mater. Sci. Eng. A 565 (2013) 342-350.
DOI URL |
[10] |
G.W. Liu, Y. Han, Z.Q. Shi, J.P. Sun, D.N. Zou, G.J. Qiao, Mater. Des. 53 (2014) 662-672.
DOI URL |
[11] | H.Y. Zhao, Research on Deformation Behavior of Super Austenitic Stainless Steel with High Mo and N iMaster Thesis, Northeastern University, 2014 in Chinese. |
[12] |
O. Comineli, R. Abushosha, B. Mintz, Mater. Sci. Technol. 15 (2013) 1058-1068.
DOI URL |
[13] |
K. Suzuki, S. Miyagawa, Y. Saito, K. Shiotani, ISIJ Int. 35 (1995) 34-41.
DOI URL |
[14] |
Y. Guo, Y. Zhao, K. Wang, S.H. Song, J. Mater. Res. Technol. 9 (2020) 16038-16050.
DOI URL |
[15] |
S.H. Song, A.M. Guo, D.D. Shen, Z.X. Yuan, J. Liu, T.D. Xu, Mater. Sci. Eng. A 360 (2003) 96-100.
DOI URL |
[16] |
K. Dou, Q. Liu, Y. Zhou, Eng. Fail. Anal. 129 (2021) 105696.
DOI URL |
[17] |
X.X. Li, M.Q. Ou, M. Wang, L. Zhang, Y.C. Ma, K. Liu, J. Mater. Sci. Technol. 60 (2021) 177-185.
DOI URL |
[18] |
S.C. Zhang, J.T. Yu, H.B. Li, Z.H. Jiang, Y.F. Geng, H. Feng, B.B. Zhang, H.C. Zhu, J. Mater. Sci. Technol. 102 (2022) 105-114.
DOI URL |
[19] |
S.C. Zhang, H.B. Li, Z.H. Jiang, Z.X. Li, J.X. Wu, B.B. Zhang, F. Duan, H. Feng, H. C. Zhu, J. Mater. Sci. Technol. 42 (2020) 143-155.
DOI URL |
[20] |
S.C. Zhang, H.B. Li, Z.H. Jiang, B.B. Zhang, Z.X. Li, J.X. Wu, S.P. Fan, H. Feng, H. C. Zhu, Mater. Charact. 152 (2019) 141-150.
DOI URL |
[21] |
S. Yamamoto, Y. Kobayashi, Tetsu-to-Hagane 78 (1992) 1609-1616.
DOI URL |
[22] |
G. Kresse, J. Hafner, Phys. Rev. B 48 (1993) 13115-13118.
DOI PMID |
[23] |
B. Mintz, S. Vue, J.J. Jonas, Int. Mater. Rev. 36 (1991) 187-220.
DOI URL |
[24] |
Y.T. He, F.M. Wang, C.R. Li, Z.B. Yang, J. Zhang, Y.L. Li, Mater. Sci. Eng. A 673 (2016) 99-107.
DOI URL |
[25] |
S.C. Zhang, Z.H. Jiang, H.B. Li, B.B. Zhang, S.P. Fan, Z.X. Li, H. Feng, H.C. Zhu, Mater. Charact. 137 (2018) 244-255.
DOI URL |
[26] |
H. Mirzadeh, J.M. Cabrera, A. Najafizadeh, P.R. Calvillo, Mater. Sci. Eng. A 538 (2012) 236-245.
DOI URL |
[27] | G.M. Carinci, Appl. Surf. Sci. 76/77 (1994) 266-271. |
[28] | L. Karlsson, H. Nordén, Acta Mater. 36 (1988) 13-24. |
[29] |
X.X. Yao, Mater. Sci. Eng. A 271 (1999) 353-359.
DOI URL |
[30] | Y.X. Zheng, F.M. Wang, C.R. Li, Z.B. Yang, Y.T. He, High Temp. Mater. Proc. 38 (2019) 380-388. |
[31] |
I. Mejía, G. Altamirano, A. Bedolla-Jacuinde, J.M. Cabrera, Metall. Mater. Trans. A 44 (2013) 5165-5176.
DOI URL |
[32] |
I. Mejía, A.E. Salas-Reyes, J. Calvo, J.M. Cabrera, Mater. Sci. Eng. A 648 (2015) 311-329.
DOI URL |
[33] |
K.R. Vishwakarma, M.C. Chaturvedi, Mater. Sci. Technol. 25 (2013) 351-360.
DOI URL |
[34] |
D. Raabe, M. Herbig, S. Sandlöbes, Y. Li, D. Tytko, M. Kuzmina, D. Ponge, P.P. Choi, Curr. Opin. Solid State Mater. Sci. 18 (2014) 253-261.
DOI URL |
[35] |
L. Pavel, H. Siegfried, P. Václav, Acta Mater. 51 (2003) 3951-3963.
DOI URL |
[36] |
P.E. Blöchl, Phys. Rev. B 50 (1994) 17953-17979.
DOI URL |
[37] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.
DOI PMID |
[38] |
H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188-5192.
DOI URL |
[39] |
J.G. Li, C.L. Zhang, L. Xu, Z.X. Zhang, N. Dong, Y. Liu, J. Wang, Y.L. Zhang, L. X. Ling, P.D. Han, Phys. B Condens. Matter 568 (2019) 25-30.
DOI URL |
[40] |
Y.P. Li, C. Han, C.L. Zhang, K. Jia, P.D. Han, X.L. Wu, Comput. Mater. Sci. 115 (2016) 170-176.
DOI URL |
[41] |
S. He, W. Ecker, R. Pippan, V.I. Razumovskiy, Comput. Mater. Sci. 167 (2019) 100-110.
DOI URL |
[42] |
K.S. Kim, J.H. Kang, S.J. Kim, Mater. Sci. Eng. A 712 (2018) 114-121.
DOI URL |
[43] |
S. Heino, Metall. Mater. Trans. A 31 (2000) 1893-1905.
DOI URL |
[44] |
J. Gong, Y.M. Jiang, B. Deng, J.L. Xu, J.P. Hu, J. Li, Electrochim. Acta 55 (2010) 5077-5083.
DOI URL |
[45] |
C.S. Wang, Y.A. Guo, J.T. Guo, L.Z. Zhou, Mater. Sci. Eng. A 639 (2015) 380-388.
DOI URL |
[46] | Y Han, H.B. Li, H. Feng, K.M. Li, Y.Z. Tian, Z.H. Jiang, J. Mater. Sci. Technol. 65 (2021) 210-215. |
[47] |
H. Zurob, Y. Brechet, J. Dunlop, Acta Mater. 54 (2006) 3983-3990.
DOI URL |
[48] |
Y. Han, H.B. Li, H. Feng, Y.Z. Tian, Z.H. Jiang, T. He, Mater. Sci. Eng. A 814 (2021) 141235.
DOI URL |
[49] |
P.O. Guglielmi, M. Ziehmer, E.T. Lilleodden, Acta Mater. 150 (2018) 195-205.
DOI URL |
[50] |
Y.S. Wu, Z. Liu, X.Z. Qin, C.S. Wang, L.Z. Zhou, J. Alloy. Compd. 795 (2019) 370-384.
DOI URL |
[51] |
J. Polák, R. Petráš, Theor. Appl. Fract. Mech. 108 (2020) 102641.
DOI URL |
[52] |
T.D. Xu, B.Y. Cheng, Prog. Mater. Sci. 49 (2004) 109-208.
DOI URL |
[53] |
K.T. Aust, R.E. Hanneman, P. Niessen, J.H. Westbrook, Acta Metall. 16 (1968) 291-302.
DOI URL |
[54] |
B.V. Petukhov, Crystallogr. Rep. 52 (2007) 112-122.
DOI URL |
[55] |
Y.N. Gornostyrev, M.I. Katsnelson, A.V. Kravtsov, A.V. Trefilov, Phys. Rev. E 66 (2002) 027201.
DOI URL |
[56] |
K. Okazaki, J. Mater. Sci. 31 (1996) 1087-1099.
DOI URL |
[57] |
D.F. Liu, J. Qin, Y.H. Zhang, Z.G. Wang, J.C. Nie, Mater. Sci. Eng. A 797 (2020) 140238.
DOI URL |
[58] |
I. Mejía, A. Bedolla-Jacuinde, C. Maldonado, J.M. Cabrera, Mater. Sci. Eng. A 528 (2011) 4133-4140.
DOI URL |
[59] | J. Lin, Y. Liu, J. Mater. Process. Technol. 143-144 (2003) 281-285. |
[60] |
D. Jia, W.R. Sun, D.S. Xu, F. Liu, J. Mater. Sci. Technol. 35 (2019) 1851-1859.
DOI |
[61] |
D.Z.L J.Y. Zhang, B. Xu, N.H. Tariq, M.Y. Sun, Y.Y. Li, J. Mater. Sci. Technol. 46 (2020) 1-11.
DOI |
[62] |
G.T. Van, D. Carron, P.L. Masson, V. Robin, A. Andrieu, J. Stodolna, J. Mater. Eng. Perform. 27 (2018) 5114-5123.
DOI URL |
[63] |
S. Singh, F. Hanning, J. Andersson, Mater. Sci. Eng. A 799 (2021) 140151.
DOI URL |
[64] |
O.A. Ojo, M.C. Chaturvedi, Metall. Mater. Trans. A 38 (2007) 356-369.
DOI URL |
[65] | W.F. Savage, E.F. Nippes, G.M. Goodwin, Weld. J. 58 (1977) 245-253. |
[1] | Jing Wang, Ning Wang, Mengnan Liu, Chengyue Ge, Baorong Hou, Guichang Liu, Wen Sun, Yiteng Hu, Yanli Ning. Hexagonal boron nitride/poly(vinyl butyral) composite coatings for corrosion protection of copper [J]. J. Mater. Sci. Technol., 2022, 96(0): 103-112. |
[2] | Jingjing Pan, Jingyang Wang. Temperature-mediated supramolecular assemblies give rise to hierarchical boron nitride nano-ribbon networks with different micro-topology [J]. J. Mater. Sci. Technol., 2022, 96(0): 160-166. |
[3] | Yating Wang, Hong Jin, Jiajun Shen, Bijia Wang, Xueling Feng, Zhiping Mao, Yumei Zhang, Xiaofeng Sui. Thermally conductive poly(lactic acid)/boron nitride composites via regenerated cellulose assisted Pickering emulsion approach [J]. J. Mater. Sci. Technol., 2022, 101(0): 146-154. |
[4] | W.T. Lin, G.M. Yeli, G. Wang, J.H. Lin, S.J. Zhao, D. Chen, S.F. Liu, F.L. Meng, Y.R. Li, F. He, Y. Lu, J.J. Kai. He-enhanced heterogeneity of radiation-induced segregation in FeNiCoCr high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 101(0): 226-233. |
[5] | Shucai Zhang, Jiangtao Yu, Huabing Li, Zhouhua Jiang, Yifeng Geng, Hao Feng, Binbin Zhang, Hongchun Zhu. Refinement mechanism of cerium addition on solidification structure and sigma phase of super austenitic stainless steel S32654 [J]. J. Mater. Sci. Technol., 2022, 102(0): 105-114. |
[6] | Chuangwei Liu, Tianyi Wang, Derek Hao, Qinye Li, Song Li, Chenghua Sun. Catalytic reduction of carbon dioxide over two-dimensional boron monolayer [J]. J. Mater. Sci. Technol., 2022, 110(0): 96-102. |
[7] | Haibo Zhang, Metin Örnek, Simanta Lahkar, Shuangxi Song, Xiaodong Wang, Richard A. Haber, Kolan Madhav Reddy. Enhanced densification and mechanical properties of β-boron by in-situ formed boron-rich oxide [J]. J. Mater. Sci. Technol., 2022, 99(0): 148-160. |
[8] | Li Liu, Jian-Tang Jiang, Xiang-Yuan Cui, Bo Zhang, Liang Zhen, Simon P. Ringer. Correlation between precipitates evolution and mechanical properties of Al-Sc-Zr alloy with Er additions [J]. J. Mater. Sci. Technol., 2022, 99(0): 61-72. |
[9] | Shuaishuai Gao, Zuju Ma, Chengwei Xiao, Zhitao Cui, Wei Du, Xueqin Sun, Qiaohong Li, Rongjian Sa, Chenghua Sun. TM3 (TM = V, Fe, Mo, W) single-cluster catalyst confined on porous BN for electrocatalytic nitrogen reduction [J]. J. Mater. Sci. Technol., 2022, 108(0): 46-53. |
[10] | Zhigang Lu, Nan Huang, Zhaofeng Zhai, Bin Chen, Lusheng Liu, Haozhe Song, Ziyao Yuan, Chuyan Zhang, Bing Yang, Xin Jiang. Integration of 3D interconnected porous microstructure and high electrochemical property for boron-doped diamond by facile strategy [J]. J. Mater. Sci. Technol., 2022, 105(0): 26-35. |
[11] | Yonggang Fan, Junxiang Fan, Cong Wang. Detailing interfacial reaction layer products between cubic boron nitride and Cu-Sn-Ti active filler metal [J]. J. Mater. Sci. Technol., 2021, 68(0): 35-39. |
[12] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Xiangdong Zha, Yingche Ma, Kui Liu. Microstructure evolution and stress rupture properties of K4750 alloys with various B contents during long-term aging [J]. J. Mater. Sci. Technol., 2021, 73(0): 108-115. |
[13] | Weichao Bao, Stuart Robertson, Jia-Wei Zhao, Ji-Xuan Liu, Houzheng Wu, Guo-Jun Zhang, Fangfang Xu. Structural integrity and damage of ZrB2 ceramics after 4 MeV Au ions irradiation [J]. J. Mater. Sci. Technol., 2021, 72(0): 223-230. |
[14] | Feng He, Bin Han, Zhongsheng Yang, Da Chen, Guma Yeli, Yang Tong, Daixiu Wei, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai. Elemental partitioning as a route to design precipitation-hardened high entropy alloys [J]. J. Mater. Sci. Technol., 2021, 72(0): 52-60. |
[15] | Jingyu Pang, Hongwei Zhang, Long Zhang, Zhengwang Zhu, Huameng Fu, Hong Li, Aimin Wang, Zhengkun Li, Haifeng Zhang. Simultaneous enhancement of strength and ductility of body-centered cubic TiZrNb multi-principal element alloys via boron-doping [J]. J. Mater. Sci. Technol., 2021, 78(0): 74-80. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||