J. Mater. Sci. Technol. ›› 2022, Vol. 110: 96-102.DOI: 10.1016/j.jmst.2021.08.082
• Research Article • Previous Articles Next Articles
Chuangwei Liua,b, Tianyi Wanga,c, Derek Haod, Qinye Lic, Song Lib,*(), Chenghua Suna,c,**(
)
Received:
2021-07-19
Revised:
2021-08-16
Accepted:
2021-08-22
Published:
2021-11-10
Online:
2021-11-10
Contact:
Song Li,Chenghua Sun
About author:
** School of Chemical Engineering and Energy Technol- ogy, Dongguan University of Technology, Dongguan 523808, China. E-mail addresses: chenghuasun@swin.edu.au (C. Sun).Chuangwei Liu, Tianyi Wang, Derek Hao, Qinye Li, Song Li, Chenghua Sun. Catalytic reduction of carbon dioxide over two-dimensional boron monolayer[J]. J. Mater. Sci. Technol., 2022, 110: 96-102.
Fig. 1. (a) Plot of electron localization function for pristine α-sheet (0%). Calculated electronic band structures of α-sheet using hybrid Heyd-Scuseria-Ernzerhof functional under the compressive strain of 0% (b), 2% (c), 3% (d), 4% (e) and 5% (f), respectively. The Fermi energy is set as zero.
Fig. 2. (a) Energies of potential poisoning species, and (b) ΔGmaxmethanol and ΔGmaxHER as a function of compressive strain on the CN-6 site of α-sheet. Free energy profile for the reduction of CO2 to methanol on the CN-6 site under 0% (c), and 4% (d) compressive strains.
Fig. 5. (a) Calculated optical adsorption spectra of alpha boron nanosheet with 4% (black) and 5% (red) compressive strain. (b) Fluctuation of temperature and energy versus the time (10 ps) for boron nanosheet (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
Fig. 3. (a) Kinetic barriers for CO dimerization on the α-sheet with different compressive strain. (b) DFT calculated reaction barrier and geometries (initial, transition and final states) for C1-C2 coupling on the pristine α-sheet (0%). Free energy profile for the reduction of OCCO* to ethanol on the CN-6 site under 0% (c) and 4% (d) compressive strain. Red, black, and pink represent O, C and B, respectively (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
Fig. 6. (a) Energy digram for CO dimerization on the α-sheet-Ag (111) with water layers, Li, Na and K cations electrolytes, respectively. (b) the maximum Gibbs free energy (ΔGmaxC2RR) for C2RR on above four models. (c) Free energy profile for the reduction of OCCO* to ethanol on boron-Ag electrodes using Na cation electrolyte. (d) Electron density difference plots for above four models with two adsorbed CO*. Yellow contours mean charge accumulations, and blue areas display charge loses. Red, black, yellow, gray, and pink represent O, C, H, Ag, and B, respectively (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
[1] |
E.E. Benson, C.P. Kubiak, A.J. Sathrum, J.M. Smieja, Chem. Soc. Rev. 38 (2009) 89-99.
DOI PMID |
[2] |
C.W. Li, J. Ciston, M.W. Kanan, Nature 508 (2014) 504-507.
DOI URL |
[3] | Y. Jiao, Y. Zheng, P. Chen, M. Jaroniec, S. Qiao, J. Am. Chem. Soc. 139 (2017) 18093-18100. |
[4] |
C. Costentin, M. Robert, J.M. Savéant, Chem. Soc. Rev. 42 (2013) 2423-2436.
DOI PMID |
[5] |
H. Yoshio, K. Katsuhei, S. Shin, Chem. Lett. 14 (1985) 1695-1698.
DOI URL |
[6] |
Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrochim. Acta 39 (1994) 1833-1839.
DOI URL |
[7] |
X. Min, M.W. Kanan, J. Am. Chem. Soc. 137 (2015) 4701-4708.
DOI URL |
[8] |
F. Calle-Vallejo, M. T.M. Koper, Angew. Chem. Int. Ed. 52 (2013) 7282-7285.
DOI PMID |
[9] |
A.A. Peterson, J.K. Nørskov, J. Phys. Chem. Lett. 3 (2012) 251-258.
DOI URL |
[10] | N. Li, X. Chen, W.J. Ong, D.R. MacFarlane, X. Zhao, A.K. Cheetham, C. Sun, ACS Nano 11 (2017) 10825-10833. |
[11] |
X. Mao, C. Tang, T. He, D. Wijethunge, C. Yan, Z. Zhu, A. Du, Nanoscale 12 (2020) 6188-6194.
DOI URL |
[12] |
K.P. Kuhl, E.R. Cave, D.N. Abram, T.F. Jaramillo, Energy Environ. Sci. 5 (2012) 7050-7059.
DOI URL |
[13] |
C. Kirk, L.D. Chen, S. Siahrostami, M. Karamad, M. Bajdich, J. Voss, J.K. Nørskov, K. Chan, ACS Cent. Sci. 3 (2017) 1286-1293.
DOI URL |
[14] | T. Cheng, H. Xiao, W.A. Goddard, J. Am. Chem. Soc. 138 (2016) 13802-13805. |
[15] | A.A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J.K. Nørskov, Energy En- viron. Sci. 3 (2010) 1311-1315. |
[16] | M. Fields, X. Hong, J.K. Nørskov, K. Chan, J. Phys. Chem. C 122 (2018) 16209-16215. |
[17] |
J.H. Montoya, C. Shi, K. Chan, J.K. Nørskov, J. Phys. Chem. Lett. 6 (2015) 2032-2037.
DOI PMID |
[18] |
T. Inoue, A. Fujishima, S. Konishi, K. Honda, Nature 277 (1979) 637-638.
DOI URL |
[19] |
J. Liu, W. Fu, Y. Liao, J. Fan, J. Mater. Sci. Technol. 91 (2021) 224-240.
DOI URL |
[20] | L. Wang, X. Zhao, D. Lv, C. Liu, W. Lai, C. Sun, Z. Su, X. Xu, W. Hao, S.X. Dou, Y. Du, Adv. Mater. 32 (2020) 2004311. |
[21] |
K. Teramura, S. Iguchi, Y. Mizuno, T. Shishido, T. Tanaka, Angew. Chem. Int. Ed. 51 (2012) 8008-8011.
DOI PMID |
[22] |
S. Gu, A.N. Marianov, H. Xu, J. Mater. Sci. Technol. 80 (2021) 20-27.
DOI URL |
[23] |
H.J. Chen, Y.L. Yang, X.X. Zou, X.L. Shi, J. Mater. Sci. Technol. 98 (2022) 143-150.
DOI URL |
[24] | J. Resasco, L.D. Chen, E. Clark, C. Tsai, C. Hahn, T.F. Jaramillo, K. Chan, A.T. Bell, J. Am. Chem. Soc. 139 (2017) 11277-11287. |
[25] |
S. Ringe, E.L. Clark, J. Resasco, A. Walton, B. Seger, A.T. Bell, K. Chan, Energy Environ. Sci. 12 (2019) 3001-3014.
DOI URL |
[26] |
G. Liu, X. Meng, H. Zhang, G. Zhao, H. Pang, T. Wang, P. Li, T. Kako, J. Ye, Angew. Chem. Int. Ed. 56 (2017) 5570-5574.
DOI URL |
[27] |
F. Ma, Y. Jiao, G. Gao, Y. Gu, A. Bilic, Z. Chen, A. Du, Nano Lett. 16 (2016) 3022-3028.
DOI URL |
[28] |
C. Hering-Junghans, Angew. Chem. Int. Ed. 57 (2018) 6738-6740.
DOI PMID |
[29] |
C. Liu, Q. Li, C. Wu, J. Zhang, Y. Jin, D.R. MacFarlane, C. Sun, J. Am. Chem. Soc. 141 (2019) 2884-2888.
DOI URL |
[30] | H. Tang, S. Ismail-Beigi, Phys. Rev. Lett. 99 (2007) 115501. |
[31] |
B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, K. Wu, Nat. Chem. 8 (2016) 563-568.
DOI URL |
[32] | C. Liu, Z. Dai, J. Zhang, Y. Jin, D. Li, C. Sun, J. Phys. Chem. C 122 (2018) 19051-19055. |
[33] | C. Liu, Q. Li, J. Zhang, Y. Jin, D.R. MacFarlane, C. Sun ,J. Phys. Chem. C 122 (2018) 25268-25273. |
[34] |
X. Wu, J. Dai, Y. Zhao, Z. Zhuo, J. Yang, X.C. Zeng, ACS Nano 6 (2012) 7443-7453.
DOI URL |
[35] | S. Xu, X. Li, Y. Zhao, J. Liao, W. Xu, X. Yang, H. Xu, J. Am. Chem. Soc. 139 (2017) 17233-17236. |
[36] |
C. Özdo ˘gan, S. Mukhopadhyay, W. Hayami, Z.B. Güvenç, R. Pandey, I. Boustani, J. Phys. Chem. C 114 (2010) 4362-4375.
DOI URL |
[37] |
F. Guinea, M.I. Katsnelson, A.K. Geim, Nat. Phys. 6 (2010) 30-33.
DOI URL |
[38] |
R.B. Sandberg, J.H. Montoya, K. Chan, J.K. Nørskov, Surf. Sci. 654 (2016) 56-62.
DOI URL |
[39] |
R.P. Jansonius, L.M. Reid, C.N. Virca, C.P. Berlinguette, ACS Energy Lett. 4 (2019) 980-986.
DOI |
[40] | H. Tang, S. Ismail-Beigi, Phys. Rev. B 82 (2010) 115412. |
[41] |
M.A.H. Vozmediano, M.I. Katsnelson, F. Guinea, Phys. Rep. 496 (2010) 109-148.
DOI URL |
[42] |
X. Nie, M.R. Esopi, M.J. Janik, A. Asthagiri, Angew. Chem. Int. Ed. 52 (2013) 2459-2462.
DOI URL |
[43] |
T. Zhuang, D.H. Nam, Z. Wang, H. Li, C.M. Gabardo, Y. Li, Z. Liang, J. Li, X. Liu, B. Chen, W.R. Leow, R. Wu, X. Wang, F. Li, Y. Lum, J. Wicks, C.P. O’Brien, T. Peng, A.H. Ip, T. Sham, S. Yu, D. Sinton, E.H. Sargent, Nat. Commun. 10 (2019) 4807.
DOI URL |
[44] |
A. Logadottir, T.H. Rod, J.K. Nørskov, B. Hammer, S. Dahl, C.J.H. Jacobsen, J. Catal. 197 (2001) 229-231.
DOI URL |
[45] |
M. Mavrikakis, B. Hammer, J.K. Nørskov, Phys. Rev. Lett. 81 (1998) 2819-2822.
DOI URL |
[46] |
X. Wang, Z. Wang, T. Zhuang, C. Dinh, J. Li, D. Nam, F. Li, C. Huang, C. Tan, Z. Chen, M. Chi, C.M. Gabardo, A. Seifitokaldani, P. Todorovi ´c, A. Proppe, Y. Pang, A.R. Kirmani, Y. Wang, A.H. Ip, L.J. Richter, B. Scheffel, A. Xu, S.C. Lo, S.O. Kelley, D. Sinton, E.H. Sargent, Nat. Commun. 10 (2019) 5186.
DOI PMID |
[47] |
M. Cao, F. Yang, Q. Zhang, J. Zhang, L. Zhang, L. Li, X. Wang, J. Mater. Sci. Technol. 76 (2021) 189-199.
DOI URL |
[48] |
T. Xu, P. Niu, S. Wang, J. Mater. Sci. Technol. 74 (2021) 128-135.
DOI URL |
[49] |
E.L. Clark, C. Hahn, T.F. Jaramillo, A.T. Bell, J. Am. Chem. Soc. 139 (2017) 15848-15857.
DOI URL |
[50] |
H. Huang, H. Jia, Z. Liu, P. Gao, J. Zhao, Z. Luo, J. Yang, J. Zeng, Angew. Chem. Int. Ed. 56 (2017) 3594-3598.
DOI URL |
[51] |
S. Liang, X. Liu, Z. Zhong, B. Han, X. Zhong, W. Chen, K. Song, H. Deng, Z. Lin, Nano Res. 14 (2021) 2558-2567.
DOI URL |
[52] |
C. Yang, H. Shen, A. Guan, J. Liu, T. Li, Y. Ji, A.M. Al-Enizi, L. Zhang, L. Qian, G. Zheng, J. Colloid Interface Sci. 570 (2020) 375-381.
DOI URL |
[53] |
M. Liu, Y. Pang, B. Zhang, P. De Luna, O. Voznyy, J. Xu, X. Zheng, C.T. Dinh, F. Fan, C. Cao, F. P.G. de Arquer, T.S. Safaei, A. Mepham, A. Klinkova, E. Ku- macheva, T. Filleter, D. Sinton, S.O. Kelley, E.H. Sargent, Nature 537 (2016) 382-386.
DOI URL |
[54] |
Y. Liu, E.S. Penev, B.I. Yakobson, Angew. Chem. Int. Ed. 52 (2013) 3156-3159.
DOI URL |
[55] | J. Xu, Y. Chang, L. Gan, Y. Ma, T. Zhai, Adv. Sci. 2 (2015) 1500023. |
[56] |
G. Tai, T. Hu, Y. Zhou, X. Wang, J. Kong, T. Zeng, Y. You, Q. Wang, Angew. Chem. Int. Ed. 54 (2015) 15473-15477.
DOI URL |
[57] | M.R. Singh, Y. Kwon, Y. Lum, J.W. Ager, A.T. Bell, J. Am. Chem. Soc. 138 (2016) 13006-13012. |
[58] | A.S. Malkani, J. Anibal, B. Xu, ACS Catal. 10 (2020) 14871-14876. |
[59] |
W. Paik, T.N. Andersen, H. Eyring, Electrochim. Acta 14 (1969) 1217-1232.
DOI URL |
[1] | J.F. Zhao, H.P. Wang, B. Wei. A new thermodynamically stable Nb2Ni intermetallic compound phase revealed by peritectoid transition within binary Nb-Ni alloy system [J]. J. Mater. Sci. Technol., 2022, 100(0): 246-253. |
[2] | Shuaishuai Gao, Zuju Ma, Chengwei Xiao, Zhitao Cui, Wei Du, Xueqin Sun, Qiaohong Li, Rongjian Sa, Chenghua Sun. TM3 (TM = V, Fe, Mo, W) single-cluster catalyst confined on porous BN for electrocatalytic nitrogen reduction [J]. J. Mater. Sci. Technol., 2022, 108(0): 46-53. |
[3] | Shaohan Li, Weiwei Sun, Yi Luo, Jin Yu, Litao Sun, Bao-Tian Wang, Ji-Xuan Liu, Guo-Jun Zhang, Igor Di Marco. Pushing the limit of thermal conductivity of MAX borides and MABs [J]. J. Mater. Sci. Technol., 2022, 97(0): 79-88. |
[4] | Xingpu Zhang, Xiaotong Deng, Haofei Zhou, Jiangwei Wang. Atomic-scale study on the precipitation behavior of an Al-Zn-Mg-Cu alloy during isochronal aging [J]. J. Mater. Sci. Technol., 2022, 108(0): 281-292. |
[5] | Hengming Huang, Kan Hu, Chen Xue, Zhiliang Wang, Zhenggang Fang, Ling Zhou, Menglong Sun, Zhongzi Xu, Jiahui Kou, Lianzhou Wang, Chunhua Lu. Metal-free π-conjugated hybrid g-C3N4 with tunable band structure for enhanced visible-light photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2021, 87(0): 207-215. |
[6] | Shumin Zhang, Hu Dong, Changsheng An, Zhongfu Li, Difa Xu, Kaiqiang Xu, Zhaohui Wu, Jie Shen, Xiaohua Chen, Shiying Zhang. One-pot synthesis of array-like sulfur-doped carbon nitride with covalently crosslinked ultrathin MoS2 cocatalyst for drastically enhanced photocatalytic hydrogen evolution [J]. J. Mater. Sci. Technol., 2021, 75(0): 59-67. |
[7] | Nana Zhao, Fengchu Zhang, Fei Zhan, Ding Yi, Yijun Yang, Weibin Cui, Xi Wang. Fe 3+-stabilized Ti3C2Tx MXene enables ultrastable Li-ion storage at low temperature [J]. J. Mater. Sci. Technol., 2021, 67(0): 156-164. |
[8] | Hairui Xing, Ping Hu, Shilei Li, Yegai Zuo, Jiayu Han, Xingjiang Hua, Kuaishe Wang, Fan Yang, Pengfa Feng, Tian Chang. Adsorption and diffusion of oxygen on metal surfaces studied by first-principle study: A review [J]. J. Mater. Sci. Technol., 2021, 62(0): 180-194. |
[9] | Liuyang Cao, Xue Cheng, Hongjie Xu, Guoqin Cao, Junhua Hu, Guosheng Shao. Planar Li growth on Li21Si5 modified Li metal for the stabilization of anode [J]. J. Mater. Sci. Technol., 2021, 76(0): 156-165. |
[10] | Bin Zhang, Yuping Duan, Haifeng Zhang, Shuo Huang, Guojia Ma, Tongmin Wang, Xinglong Dong, . Magnetic transformation of Mn from anti-ferromagnetism to ferromagnetism in FeCoNiZMnx (Z = Si, Al, Sn, Ge) high entropy alloys [J]. J. Mater. Sci. Technol., 2021, 68(0): 124-131. |
[11] | Yaxin Bi, Yanling Yang, Xiao-Lei Shi, Lei Feng, Xiaojiang Hou, Xiaohui Ye, Li Zhang, Guoquan Suo, Siyu Lu, Zhi-Gang Chen. Full-spectrum responsive photocatalytic activity via non-noble metal Bi decorated mulberry-like BiVO4 [J]. J. Mater. Sci. Technol., 2021, 83(0): 102-112. |
[12] | Nan Wang, Yidi Shen, Qi An, Kolan Madhav Reddy, Mingjiang Jin, Rajamallu Karre, Xiaodong Wang. Microstructure evolution and mechanical property of Cu-15Ni-8Sn-0.2Nb alloy during aging treatment [J]. J. Mater. Sci. Technol., 2021, 86(0): 227-236. |
[13] | Chaoqiang Liu, Houwen Chen, Min Song, Jian-Feng Nie. Electron beam irradiation induced metastable phase in a Mg-9.8 wt%Sn alloy [J]. J. Mater. Sci. Technol., 2021, 84(0): 133-138. |
[14] | Tiantian Wang, Jun Mei, Jianjun Liu, Ting Liao. Maximizing ionic transport of Li1+xAlxTi2-xP3O12 electrolytes for all-solid-state lithium-ion storage: A theoretical study [J]. J. Mater. Sci. Technol., 2021, 73(0): 45-51. |
[15] | Hanxun Wang, Baichun Hu, Zisen Gao, Fengjiao Zhang, Jian Wang. Emerging role of graphene oxide as sorbent for pesticides adsorption: Experimental observations analyzed by molecular modeling [J]. J. Mater. Sci. Technol., 2021, 63(0): 192-202. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||