J. Mater. Sci. Technol. ›› 2022, Vol. 110: 84-95.DOI: 10.1016/j.jmst.2021.07.050
• Research Article • Previous Articles Next Articles
Yafeng Yanga,b,*(), Kang Genga,b, Shaofu Lia,b, Michael Berminghamc, R.D.K. Misrad
Received:
2021-06-15
Revised:
2021-07-22
Accepted:
2021-07-29
Published:
2021-11-12
Online:
2021-11-12
Contact:
Yafeng Yang
About author:
* State Key Laboratory of Multiphase Complex Sys- tems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China. E-mail address: yfyang@ipe.ac.cn (Y. Yang).Yafeng Yang, Kang Geng, Shaofu Li, Michael Bermingham, R.D.K. Misra. Highly ductile hypereutectic Al-Si alloys fabricated by selective laser melting[J]. J. Mater. Sci. Technol., 2022, 110: 84-95.
Cooling condition | Modifier addition | Size of primary Si (μm) | Refs. |
---|---|---|---|
Spray atomization | - | 3-10 | [ |
Melt-spinning | - | 0.5-5 | [ |
Rapid quenching | - | ∼33 | [ |
Cu mold casting | Ce | 50-75 | [ |
Steel mold casting | P | 30-100 | [ |
Serpentine pouring channel process | Sr | 26-29 | [ |
Table 1. Summary of the refinement treatment of primary Si in hypereutectic Al-Si alloys with similar compositions.
Cooling condition | Modifier addition | Size of primary Si (μm) | Refs. |
---|---|---|---|
Spray atomization | - | 3-10 | [ |
Melt-spinning | - | 0.5-5 | [ |
Rapid quenching | - | ∼33 | [ |
Cu mold casting | Ce | 50-75 | [ |
Steel mold casting | P | 30-100 | [ |
Serpentine pouring channel process | Sr | 26-29 | [ |
Fig. 1. SEM images of powder morphologies: (a) original AlSi20 powder; (b-d) coated powders with different P contents at (b) 0.05 wt.%, (c) 0.14 wt.% and (d) 0.22 wt.%. (a’-d’) are the magnified BSE images of a single powder in (a-d). (e) Microstructure in the original AlSi20 powder and (f) XRD patterns of the original and coated powders.
Fig. 2. Optical images of the printed samples from (a) original AlSi20 powder and coated powders with different P contents at (b) 0.05 wt.%, (c) 0.14 wt.% and (d) 0.22 wt.%. BD means building direction.
Fig. 3. BSE images of microstructure in the printed samples from (a) original AlSi20 powder and coated powders with different P contents at (b) 0.05 wt.%, (c) 0.14 wt.% and (d) 0.22 wt.%. The melt pool boundary was abbreviated as MPB, which was pointed by yellow dotted line.
Fig. 4. The enlarged views of microstructure at the MPB in the printed samples from (a) original powder and coated powders with different P contents at (b) 0.05 wt.%, (c) 0.14 wt.% and (d) 0.22 wt.%.
Fig. 5. Microstructure inside the melting pools of the printed samples from (a) original AlSi20 powder and coated powders with different P contents at (b) 0.05 wt.%, (c) 0.14 wt.% and (d) 0.22 wt.%.
P content (wt.%) | Number density (/μm2) | Area fraction (%) |
---|---|---|
0 | 0.11 | 4.06 |
0.05 | 1.42 | 18.18 |
0.14 | 2.14 | 17.04 |
0.22 | 4.94 | 26.52 |
Table 2. The number density and area fraction of primary Si.
P content (wt.%) | Number density (/μm2) | Area fraction (%) |
---|---|---|
0 | 0.11 | 4.06 |
0.05 | 1.42 | 18.18 |
0.14 | 2.14 | 17.04 |
0.22 | 4.94 | 26.52 |
Fig. 6. The enlarged views of the marked area in the melting pool shown in Fig. 5. The samples were printed from (a) original AlSi20 powder and coated powders with different P contents at (b) 0.05 wt.%, (c) 0.14 wt.% and (d) 0.22 wt.%.
Fig. 7. EBSD results of the printed sample from (a) to (c) original AlSi20 powder, (b) and (d) coated powder of P content at 0.05 wt.%. (e) and (f) are the corresponding pole figures and inverse pole figures of printed sample from original AlSi20 powder and coated powder, respectively.
Fig. 8. Tensile stress-strain curves of the printed samples from original AlSi20 powder and coated powders with different P contents. The UTS values are given in the brackets.
P content (%) | 0 | 0.05 | 0.14 | 0.22 |
---|---|---|---|---|
UTS (MPa) | 507 (± 12) | 490 (± 10) | 463 (± 22) | 433 (± 62) |
YS (MPa) | 450 (± 15) | 343 (± 23) | 318 (± 12) | 315 (± 0) |
Elongation (%) | 2.2 (± 0.3) | 7.0 (± 1.1) | 6.3 (± 0.7) | 5.7 (± 3.4) |
Table 3. The average tensile properties of the printed samples with different P-content.
P content (%) | 0 | 0.05 | 0.14 | 0.22 |
---|---|---|---|---|
UTS (MPa) | 507 (± 12) | 490 (± 10) | 463 (± 22) | 433 (± 62) |
YS (MPa) | 450 (± 15) | 343 (± 23) | 318 (± 12) | 315 (± 0) |
Elongation (%) | 2.2 (± 0.3) | 7.0 (± 1.1) | 6.3 (± 0.7) | 5.7 (± 3.4) |
Fig. 9. Fractographs of printed tensile bars from (a) original AlSi20 powder and coated powders with different P contents at (b) 0.05 wt.%, (c) 0.14 wt.% and (d) 0.22 wt.%. (a1-d1) The low-magnification images and (a2-d2) high-magnification images of the horizontal section of tensile bars. (a3-d3) The high-magnification images of fracture surface of tensile bars.
Fig. 11. (a), (c) and (d) TEM images of primary Si in the printed sample from the coated powders with P-content at 0.05 wt.%. (b) The EDS spot analysis results of the spherical particle marked in (a).
Fig. 12. The estimated relationship between the critical nucleation size of primary Si and the degree of undercooling. The inset is the enlarged view when undercooling degree is from 0 to 100 K.
Fig. 13. TEM images of microstructure in the vicinity area of crack in the tensile failure samples: (a, b) unmodified alloy, (c, d) modified alloys with the P content at 0.05 wt.%. (b) is the high-magnification view of the primary Si marked in (a).
[1] | H. Yamagata, W. Kasprzak, M. Aniolek, H. Kurita, J.H. Sokolowski, J. Mater. Pro- cess. Technol. 203 (2008) 333-341. |
[2] |
Y. Birol, F. Birol, Wear 265 (2008) 590-597.
DOI URL |
[3] |
Q. Li, T. Xia, Y. Lan, P. Li, L. Fan, Mater. Sci. Eng. A 588 (2013) 97-102.
DOI URL |
[4] |
H. Qiao, T. Gao, X. Zhu, Y. Wu, Z. Qian, X. Liu, J. Alloys Compd. 622 (2015) 662-668.
DOI URL |
[5] |
K.N. Prabhu, Trans. Indian Inst. Met. 67 (2013) 1-18.
DOI URL |
[6] |
F. Cao, Y. Jia, K.G. Prashanth, P. Ma, J. Liu, S. Scudino, F. Huang, J. Eckert, J. Sun, Mater. Des. 74 (2015) 150-156.
DOI URL |
[7] |
R.V. Reyes, T.S. Bello, R. Kakitani, T.A. Costa, A. Garcia, N. Cheung, J.E. Spinelli, Mater. Sci. Eng. A 685 (2017) 235-243.
DOI URL |
[8] |
Y.D. Jia, P. Ma, K.G. Prashanth, G. Wang, J. Yi, S. Scudino, F.Y. Cao, J.F. Sun, J. Eck- ert, J. Alloys Compd. 699 (2017) 548-553.
DOI URL |
[9] |
X. Liu, Y. Wu, X. Bian, J. Alloys Compd. 391 (2005) 90-94.
DOI URL |
[10] |
C.L. Xu, H.Y. Wang, F. Qiu, Y.F. Yang, Q.C. Jiang, Mater. Sci. Eng. A 417 (2006) 275-280.
DOI URL |
[11] |
X. Chen, Y. Zhong, T. Zheng, Z. Shen, J. Wang, L. Fan, Y. Zhai, M. Peng, B. Zhou, W. Ren, Z. Lei, Z. Ren, Q. He, J. Alloys Compd. 714 (2017) 39-46.
DOI URL |
[12] |
Z. Cai, R. Wang, C. Peng, C. Zhang, Metall. Mater. Trans. B 46 (2014) 824-830.
DOI URL |
[13] |
A. Chaus, E. Marukovich, M. Sahul, Metals 10 (2020) 819-832.
DOI URL |
[14] |
V. Vijeesh, J. Mater. Eng. Perform. 26 (2016) 343-349.
DOI URL |
[15] | J. Li, F.S. Hage, X. Liu, Q. Ramasse, P. Schumacher, Sci. Rep. 6 (2016) 25244. |
[16] |
P. Yan, W. Mao, J. Fan, B. Wang, Materials 12 (2019) 3109-3121.
DOI URL |
[17] |
Y. Li, B. Hu, B. Liu, A. Nie, Q. Gu, J. Wang, Q. Li, Acta Mater. 187 (2020) 51-65.
DOI URL |
[18] |
Y. Li, Y. Jiang, B. Liu, Q. Luo, B. Hu, J. Mater. Sci. Technol. 65 (2021) 190-201.
DOI URL |
[19] |
C. Zhao, Y. Li, J. Xu, Q. Luo, Y. Jiang, Q. Xiao, J. Mater. Sci. Technol. 94 (2021) 104-112.
DOI URL |
[20] |
K. Al-Helal, I.C. Stone, Z. Fan, Trans. Indian Inst. Met. 65 (2012) 663-667.
DOI URL |
[21] |
P. Ma, K. Prashanth, S. Scudino, Y. Jia, H. Wang, C. Zou, Z. Wei, J. Eckert, Metals 4 (2014) 28-36.
DOI URL |
[22] |
K.V. Yang, P. Rometsch, C. H.J. Davies, A. Huang, X. Wu, Mater. Des. 154 (2018) 275-290.
DOI URL |
[23] |
W. Li, S. Li, J. Liu, A. Zhang, Y. Zhou, Q. Wei, C. Yan, Y. Shi, Mater. Sci. Eng. A 663 (2016) 116-125.
DOI URL |
[24] | K. Geng, Y. Yang, S. Li, R. D.K. Misra, Q. Zhu, Metall. Mater. Trans. A 50 (2019) 4 970-4 976. |
[25] | K. Geng, Y. Yang, S. Li, R. D.K. Misra, Q. Zhu, Addit. Manuf. 32 (2020) 101012. |
[26] | S.F. Li, Y.F. Yang, K. Kondoh, S. Kariya, Q.S. Zhu, Y. Shi, Materialia 5 (2019) 100182. |
[27] |
N. Kang, P. Coddet, H. Liao, T. Baur, C. Coddet, Appl. Surf. Sci. 378 (2016) 142-149.
DOI URL |
[28] |
N. Kang, P. Coddet, M.R. Ammarb, H. Liaoa, C. Coddet, Mater. Charact. 130 (2017) 243-249.
DOI URL |
[29] |
J.G. Jung, T.Y. Ahn, Y.H. Cho, S.H. Kim, J.M. Lee, Acta Mater. 144 (2018) 31-40.
DOI URL |
[30] |
J. Wang, Z. Guo, S.M. Xiong, Mater. Charact. 123 (2017) 354-359.
DOI URL |
[31] |
N.T. Aboulkhair, I. Maskery, C. Tuck, I. Ashcroft, N.M. Everitt, Mater. Sci. Eng. A 667 (2016) 139-146.
DOI URL |
[32] |
H. Qin, Q. Dong, V. Fallah, M.R. Daymond, Metall. Mater. Trans. A 51 (2020) 448-466.
DOI URL |
[33] | N. Takata, M. Liu, H. Kodaira, A. Suzuki, M. Kobashi, Addit. Manuf. 33 (2020) 101152. |
[34] |
N. Takata, H. Kodaira, K. Sekizawa, A. Suzuki, M. Kobashi, Mater. Sci. Eng. A 704 (2017) 218-228.
DOI URL |
[35] |
J.H. Jeon, J.H. Shin, D.H. Bae, Mater. Sci. Eng. A 748 (2019) 367-370.
DOI URL |
[36] | Y. Zhao, Y. Koizumi, K. Aoyagi, D. Wei, K. Yamanaka, A. Chiba, Addit. Manuf. 26 (2019) 202-214. |
[37] | W. Wang, N. Takata, A. Suzuki, M. Kobashi, M. Kato, Intermetallics 125 (2020) 106892. |
[38] | W. Ren, Formation Process and Control Method of AlP in Phosphorus-Contain- ing Master Alloys Master Thesis, Liaoning University of Technology, Jinzhou, Liaoning, China, 2019. |
[39] | M.C. Flemings, Solidification Processing, McGraw-Hill, New York, 1974. |
[40] | O. Tatsuya, M. Kiyotaka, K. Masayuki, I. Youichi, Light Met. 47 (1997) 71-77. |
[41] |
M.D. Peres, C.A. Siqueira, A. Garcia, J. Alloys Compd. 381 (2004) 168-181.
DOI URL |
[42] |
D. Zhang, A. Prasad, M.J. Bermingham, C.J. Todaro, M.J. Benoit, M.N. Patel, D. Qiu, D.H. StJohn, M. Qian, M.A. Easton, Metall. Mater. Trans. A 51 (2020) 4341-4359.
DOI URL |
[43] |
M.N. Patel, D. Qiu, G. Wang, M.A. Gibson, A. Prasad, D.H. StJohn, M.A. Easton, Scr. Mater. 178 (15) (2020) 447-451.
DOI URL |
[44] |
A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans, D.J. Bristow, Acta Mater. 48 (2000) 2823-2835.
DOI URL |
[45] |
J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock, Nature 549 (2017) 365-369.
DOI URL |
[46] | Q. Tan, J. Zhang, N. Mo, Z. Fan, Y. Yin, M. Bermingham, Y. Liu, H. Huang, M.X. Zhang, Addit. Manuf. 32 (2020) 101034. |
[47] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI |
[48] |
Y. Pang, D. Sun, Q. Gu, K.C. Chou, X. Wang, Q. Li, Cryst. Growth Des. 16 (2016) 2404-2415.
DOI URL |
[49] |
Y. Guo, B. Liu, W. Xie, Q. Luo, Q. Li, Scr. Mater. 193 (2021) 127-131.
DOI URL |
[50] |
Z. Zhang, X. Bian, Y. Wang, X. Liu, Mater. Sci. Eng. A 352 (1-2) (2003) 8-15.
DOI URL |
[51] |
K.V. Yang, Y. Shi, F. Palm, X. Wu, P. Rometsch, Scr. Mater. 145 (2018) 113-117.
DOI URL |
[52] | C.L. Xu, H.Y. Wang, Y.F. Yang, Q.C. Jiang, Mater. Sci. Eng. A 452-453 (2007) 341-346. |
[53] |
S. Zhang, P. Ma, Y. Jia, Z. Yu, R. Sokkalingam, X. Shi, P. Ji, J. Eckert, K.G. Prashanth, Materials 12 (2019) 2126-2136.
DOI URL |
[54] |
T. Kimura, T. Nakamoto, M. Mizuno, H. Araki, Mater. Sci. Eng. A 682 (2017) 593-602.
DOI URL |
[55] | Z.H. Xiong, S.L. Liu, S.F. Li, Y. Shi, Y.F. Yang, R.D.K. Misra, Mater. Sci. Eng. A 740-741 (2019) 148-156. |
[56] |
H. Choi, H. Konishi, X. Li, Mater. Sci. Eng. A 541 (2012) 159-165.
DOI URL |
[1] | Chong Yang, Pengming Cheng, Baoan Chen, Jinyu Zhang, Gang Liu, Jun Sun. Solute clusters-promoted strength-ductility synergy in Al-Sc alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 325-331. |
[2] | Q. Yan, B. Chen, L. Cao, K.Y. Liu, S. Li, L. Jia, K. Kondoh, J.S. Li. Improved mechanical properties in titanium matrix composites reinforced with quasi-continuously networked graphene nanosheets and in-situ formed carbides [J]. J. Mater. Sci. Technol., 2022, 96(0): 85-93. |
[3] | H.Y. Wan, W.K. Yang, L.Y. Wang, Z.J. Zhou, C.P. Li, G.F. Chen, L.M. Lei, G.P. Zhang. Toward qualification of additively manufactured metal parts: Tensile and fatigue properties of selective laser melted Inconel 718 evaluated using miniature specimens [J]. J. Mater. Sci. Technol., 2022, 97(0): 239-253. |
[4] | Shuang Jiang, Lin Peng Ru, Kristián Máthis, Hai-Le Yan, Gergely Farkas, Zoltán Hegedues, Ulrich Lienert, Johan Moverare, Xiang Zhao, Liang Zuo, Nan Jia, Yan-Dong Wang. Shear banding-induced 〈c+a〉 slip enables unprecedented strength-ductility combination of laminated metallic composites [J]. J. Mater. Sci. Technol., 2022, 110(0): 260-268. |
[5] | Wenjie Lu, Kang Yan, Xian Luo, Yuetang Wang, Le Hou, Pengtao Li, Bin Huang, Yanqing Yang. Superb strength and ductility balance of a Co-free medium-entropy alloy with dual heterogeneous structures [J]. J. Mater. Sci. Technol., 2022, 98(0): 197-204. |
[6] | Heng Duan, Bin Liu, Ao Fu, Junyang He, Tao Yang, C.T. Liu, Yong Liu. Segregation enabled outstanding combination of mechanical and corrosion properties in a FeCrNi medium entropy alloy manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 99(0): 207-214. |
[7] | Wanting Sun, Bo Wu, Hui Fu, Xu-Sheng Yang, Xiaoguang Qiao, Mingyi Zheng, Yang He, Jian Lu, San-Qiang Shi. Combining gradient structure and supersaturated solid solution to achieve superior mechanical properties in WE43 magnesium alloy [J]. J. Mater. Sci. Technol., 2022, 99(0): 223-238. |
[8] | Shengfeng Zhou, Min Xie, Changyi Wu, Yanliang Yi, Dongchu Chen, Lai-Chang Zhang. Selective laser melting of bulk immiscible alloy with enhanced strength: Heterogeneous microstructure and deformation mechanisms [J]. J. Mater. Sci. Technol., 2022, 104(0): 81-87. |
[9] | Jingbo Gao, Yuting Jin, Yongqiang Fan, Dake Xu, Lei Meng, Cong Wang, Yuanping Yu, Deliang Zhang, Fuhui Wang. Fabricating antibacterial CoCrCuFeNi high-entropy alloy via selective laser melting and in-situ alloying [J]. J. Mater. Sci. Technol., 2022, 102(0): 159-165. |
[10] | H. Zhang, Y. Wang, J.J. Wang, D.R. Ni, D. Wang, B.L. Xiao, Z.Y. Ma. Achieving superior mechanical properties of selective laser melted AlSi10Mg via direct aging treatment [J]. J. Mater. Sci. Technol., 2022, 108(0): 226-235. |
[11] | Xiaoru Liu, Hao Feng, Jing Wang, Xuefei Chen, Ping Jiang, Fuping Yuan, Huabing Li, En Ma, Xiaolei Wu. Mechanical property comparisons between CrCoNi medium-entropy alloy and 316 stainless steels [J]. J. Mater. Sci. Technol., 2022, 108(0): 256-269. |
[12] | Y.K. Xiao, H. Chen, Z.Y. Bian, T.T. Sun, H. Ding, Q. Yang, Y. Wu, Q. Lian, Z. Chen, H.W. Wang. Enhancing strength and ductility of AlSi10Mg fabricated by selective laser melting by TiB2 nanoparticles [J]. J. Mater. Sci. Technol., 2022, 109(0): 254-266. |
[13] | H.Z. Lu, L.H. Liu, , X. Luo, C.H. Song, Z. Wang, J. Wang, Y.D. Su, Y.F. Ding, L.C. Zhang, Y.Y. Li. Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti2Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 101(0): 205-216. |
[14] | Fan Yang, Lilin Wang, Zhijun Wang, Qingfeng Wu, Kexuan Zhou, Xin Lin, Weidong Huang. Ultra strong and ductile eutectic high entropy alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 106(0): 128-132. |
[15] | Gang Niu, Hatem S. Zurob, R.D.K. Misra, Huibin Wu, Yu Zou. Strength-ductility synergy in a 1.4 GPa austenitic steel with a heterogeneous lamellar microstructure [J]. J. Mater. Sci. Technol., 2022, 106(0): 133-138. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||