J. Mater. Sci. Technol. ›› 2022, Vol. 110: 73-83.DOI: 10.1016/j.jmst.2021.08.086
• Research Article • Previous Articles Next Articles
Zhifei Wanga,b, Jinbo Xuea,*(), Yong Lia,b, Qianqian Shena, Qi Lic, Xiaochao Zhangd, Xuguang Liua,b, Husheng Jiaa,b,**(
)
Received:
2021-04-10
Revised:
2021-08-22
Accepted:
2021-08-22
Published:
2021-11-10
Online:
2021-11-10
Contact:
Jinbo Xue,Husheng Jia
About author:
** Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, China. E-mail addresses: jia_husheng@126.com (H. Jia).Zhifei Wang, Jinbo Xue, Yong Li, Qianqian Shen, Qi Li, Xiaochao Zhang, Xuguang Liu, Husheng Jia. Robust Fe2+-doped nickel-iron layered double hydroxide electrode for electrocatalytic reduction of hexavalent chromium by pulsed potential method[J]. J. Mater. Sci. Technol., 2022, 110: 73-83.
Fig. 4. (a, b) High-magnification, (inset a1 and b1) low-magnification SEM images and (inset a2 and b2) the optical images of bare Ni foam and Fe2+-NiFe LDH/NF; (c) Low-magnification TEM image of Fe2+-NiFe LDH and corresponding SAED pattern (inset); (d) High-resolution TEM image (HRTEM) of Fe2+-NiFe LDH; and (e) EDS mapping images of Fe2+-NiFe LDH (For interpretation of the references to color in this figure, the reader is referred to the web version of this article).
Fig. 6. Parameters optimizatioon in electrocatalytic removal of Cr(VI) with Fe2+-NiFe LDH/NF: (a) Ea (at fixed Ec = -0.8 V vs. SCE); (b) Ec (at fixed Ea = -0.1 V vs. SCE); (c) pulsed time; (d) electrolyte concentration; (e) removal performance with pulsed potential, constant Ea = -0.1 V, Ec = -0.6 V vs. SCE and adsorption; (f) removal efficiency with respect to charge consumption under constant and pulsed potential.
Fig. 7. (a) Performance of Cr(VI) removal using different electrodes; effect of (b) pH, (c) initial concentration, and (d) coexisting ions on Cr(VI) removal (Condition: Ea = -0.1 V and Ec = -0.6 V).
Fig. 8. Removal performance of total Cr and Cr(VI) under (a) constant Ea = -0.1 V vs. SCE and (b) pulsed potential; (c) CV curve of Fe2+-NiFe LDH/NF in NaCl solution without Cr(VI); and (d) CV curves of bare Ni foam in NaCl solution with presence and absence of Cr(VI).
[1] |
H.Y. Dong, G.F. Wei, T.C. Cao, B.B. Shao, X.H. Guan, T.J. Strathmann, Environ. Sci. Technol. 54 (2020) 1157-1166.
DOI URL |
[2] |
P. Liao, C. Pan, W.Y. Ding, W.L. Li, S.H. Yuan, J.D. Fortner, D.E. Giammar, Environ. Sci. Technol. 54 (2020) 4256-4266.
DOI URL |
[3] | Q.Q. Shen, J.B. Xue, Y. Li, G.X. Gao, Q. Li, X.G. Liu, H.S. Jia, B.S. Xu, Y.C. Wu, S.J. Dillonc, Appl. Catal. B Environ. 282 (2021) 119552. |
[4] | B. Jiang, Q.H. Niu, C. Li, N. Oturan, M.A. Oturan, Appl. Catal. B Environ. 272 (2020) 119002. |
[5] |
X.R. Chen, Y. Zhang, D.S. Yuan, W. Huang, J. Ding, H. Wan, W.L. Dai, J. Mater. Sci. Technol. 71 (2021) 211-220.
DOI URL |
[6] |
M. Yu, J. Shang, J. Mater. Sci. Technol. 91 (2021) 17-27.
DOI URL |
[7] |
X. Mo, Z.H. Yang, H.Y. Xu, G.M. Zeng, J. Huang, X. Yang, P.P. Song, L.K. Wang, J. Hazard. Mater. 286 (2015) 493-502.
DOI URL |
[8] |
X.L. Hou, Z. Wang, C.Q. Fang, Y.L. Cheng, J. Mater. Sci. Technol. 35 (2019) 323-329.
DOI URL |
[9] | J. Ali, L. Wang, H. Waseem, R. Djellabi, N.A. Oladoja, G. Pan, Chem. Eng. J. 384 (2020) 123335. |
[10] |
T.J. Jiang, M. Yang, S.S. Li, M.J. Ma, N.J. Zhao, Z. Guo, J.H. Liu, X.J. Huang, Anal. Chem. 89 (2017) 5557-5564.
DOI URL |
[11] | Z.D. Wang, Y.T. Feng, X.G. Hao, W. Huang, X.S. Feng, J. Mater. Chem. A 2 (2014) 10263-10272. |
[12] | L.K. Xu, E.I. Izgorodina, M.L. Coote, J. Am. Chem. Soc. 142 (2020) 12826-12833. |
[13] | Y.P. Long, J.T. Nie, C.C. Yuan, H. Ma, Y.Q. Chen, Y.Q. Cong, Q. Wang, Y. Zhang, Appl. Catal. B Environ. 283 (2021) 119604. |
[14] | J.A. Yáñez-Varela, A. Alonzo-Garcia, I. González-Neria, V. Mendoza-Escamilla, G. Rivadeneyra-Romero, S.A. Martínez-Delgadillo, Chem. Eng. J. 390 (2020) 124575. |
[15] | F.B. Yao, M.C. Jia, Q. Yang, K. Luo, F. Chen, Y. Zhong, L. He, Z.J. Pi, K.J. Hou, D.B. Wang, X.M. Li, Chemosphere 260 (2020) 127537. |
[16] | Y. Luo, Y.H. Wu, C. Huang, D.Z. Xiao, L.Z. Zhang, S.H. Ma, J.K. Qu, S.L. Zheng, P.K. Chu, Chem. Eng. J. 396 (2020) 125156. |
[17] |
J. Wu, H. Zheng, F. Zhang, R.J. Zeng, B.S. Xing, Chem. Eng. J. 362 (2019) 21-29.
DOI URL |
[18] |
M. Gheju, I. Balcu, J. Hazard. Mater. 196 (2011) 131-138.
DOI PMID |
[19] |
Q. Wang, D. O’Hare, Chem. Rev. 112 (2012) 4124-4155.
DOI URL |
[20] |
S.T. Lin, H.N. Tran, H.P. Chao, J.F. Lee, Appl. Clay Sci. 162 (2018) 443-453.
DOI URL |
[21] |
H.N. Trana, D.T. Nguyen, G.T. Le, F. Tomuld, E.C Lima, S.H. Woo, A.K. Sarmah, H.Q. Nguyen, P.T. Nguyen, D.D. Nguyen, T.V. Nguyen, S. Vigneswaran. D.V.N. Vo, H.P. Chao, J. Hazard. Mater. 373 (2019) 258-270.
DOI PMID |
[22] |
F. Li, Y.F. Wang, Q.Z. Yang, D.G. Evans, C. Forano, X. Duan, J. Hazard. Mater. 125 (2005) 89-95.
DOI URL |
[23] | F.L. Ling, L. Fang, Y. Lu, J.M. Gao, F. Wu, M. Zhou, B.S. Hu, Microporous Meso- porous Mater. 234 (2016) 230-238. |
[24] |
W.X. Zhu, T.S. Zhang, Y. Zhang, Z.H. Yue, Y.G. Li, R. Wang, Y.W. Ji, X.P. Sun, J.L. Wang, Appl. Catal. B Environ. 244 (2019) 844-852.
DOI URL |
[25] |
Z. Cai, D.J. Zhou, M.Y. Wang, S.M. Bak, Y.S. Wu, Z.S. Wu, Y. Tian, X.Y. Xiong, Y.P. Li, W. Liu, S. Siahrostami, Y. Kuang, X.Q. Yang, H.H. Duan, Z.X. Feng, H.L. Wang, X.M. Sun, Angew. Chem. Int. Ed. 57 (2018) 9392-9396.
DOI URL |
[26] | D.G. Evans, R. C.T. Slade, X. Duan, D.G. Evans, Springer, Heidelberg, Berlin, 2006, pp. 1-87. Structure and Bonding. |
[27] |
F. Xu, R.D. Webster, J.F. Chen, T. T.Y. Tan, P. H.L. Sit, W.Y. Teoh, Appl. Catal. B Environ. 210 (2017) 444-453.
DOI URL |
[28] | J. Zhu, G.F. Zhao, W.D. Sun, Q. Nie, S. Wang, Q.S. Xue, Y. Liu, Y. Lu, Appl. Catal. B Environ. 270 (2020) 118873. |
[29] |
Y. Dong, S. Komarneni, N. Wang, W.C. Hu, W.Y. Huang, J. Mater. Chem. A 7 (2019) 6995-7005.
DOI |
[30] |
F. Cavani, F. Trifiro, A. Vaccari, Catal. Today 11 (1991) 173-307.
DOI URL |
[31] | Z.F. Wang, Q.Q. Shen, J.B. Xue, H.S. Jia, B.S. Xu, X.G. Liu, Q. Li, Mater. Chem. Phys. 240 (2020) 122140. |
[32] | H.S. Yin, Q. Guo, C. Lei, W.Q. Chen, B.B. Huang, Chem. Eng. J. 396 (2020) 125156. |
[33] |
J.F. Xie, H.C. Qu, F.C. Lei, X. Peng, W.W. Liu, L. Gao, P. Hao, G.W. Cui, B. Tang, J. Mater. Chem. A 6 (2018) 16121-16129.
DOI URL |
[34] | Z.F. Wang, Q.Q. Shen, J.B. Xue, R.F. Guan, Q. Li, X.G. Liu, H.S. Jia, Y.C. Wu, Chem. Eng. J. 402 (2020) 126151. |
[35] | J.Q. Gao, Q.Q. Shen, R.F. Guan, J.B. Xue, X.G. Liu, H.S. Jia, Q. Li, Y.C. Wu, J. CO 2 Util. 35 (2020) 205-215. |
[36] |
Z.L. Zhao, H.X. Wu, H.L. He, X.L. Xu, Y.D. Jin, J. Mater. Chem. A 3 (2015) 7179-7186.
DOI URL |
[37] | H.T. Wang, C.Z. Na, ACS Appl. Mater. Interfaces 6 (2014) 20309-20316. |
[38] |
M. Li, S.Q. Zhou, Chem. Eng. J. 339 (2018) 539-546.
DOI URL |
[39] |
L.P. Huang, X.L. Chai, G.H. Chen, B.E. Logan, Environ. Sci. Technol. 45 (2011) 5025-5031.
DOI URL |
[40] | Y. Li, J.B. Xue, Q.Q. Shen, S.F. Jia, Q. Li, Y.X. Li, X.G. Liu, H.S. Jia, Chem. Eng. J. 423 (2021) 130188. |
[41] | J.X. Han, X.Y. Meng, L. Lu, Z.L. Wang, C.W. Sun, Nano Energy 72 (2020) 104669. |
[42] |
J.T. Liu, Y. Ding, L.F. Ji, X. Zhang, F.C. Yang, J.D. Wang, W.D. Kang, Anal. Methods 9 (2017) 1031-1037.
DOI URL |
[1] | Yu Gao, Wuzhu Sun, Weiyi Yang, Qi Li. Palladium nanoparticles supported on amine-functionalized glass fiber mat for fixed-bed reactors on the effective removal of hexavalent chromium by catalytic reduction [J]. J. Mater. Sci. Technol., 2018, 34(6): 961-968. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||