J. Mater. Sci. Technol. ›› 2022, Vol. 110: 65-72.DOI: 10.1016/j.jmst.2021.08.037
• Research Article • Previous Articles Next Articles
Lin Zhanga,b, Nuomei Lia,b, Qiuchen Maa,b, Jiahui Dinga,b, Chuang Chena,b, Zhaocheng Hua,b, Weiwei Zhaoa,b, Yufeng Lia,b, Huanhuan Fenga,b, Mingyu Lia,b, Hongjun Jia,b,*()
Received:
2021-06-15
Revised:
2021-08-11
Accepted:
2021-08-30
Published:
2021-11-10
Online:
2021-11-10
Contact:
Hongjun Ji
About author:
* E-mail address: jhj7005@hit.edu.cn (H. Ji).Lin Zhang, Nuomei Li, Qiuchen Ma, Jiahui Ding, Chuang Chen, Zhaocheng Hu, Weiwei Zhao, Yufeng Li, Huanhuan Feng, Mingyu Li, Hongjun Ji. Large-area flexible and transparent UV photodetector based on cross-linked Ag NW@ZnO NRs with high performance[J]. J. Mater. Sci. Technol., 2022, 110: 65-72.
Fig. 1. Appearance of Ag NWs by (a) low magnification SEM, (b) high magnification SEM, and (c) TEM. Appearance of Ag NW@ZnO NPs by (d) SEM, and (e, f) TEM. Appearance of Ag NW@S-ZnO NRs by (g) SEM and (h, i) TEM. Appearance of Ag NW@L-ZnO NRs by (j) SEM and (k, l) TEM. (m) XRD patterns of Ag NWs, Ag NW@ZnO NPs and Ag NW@ZnO NRs. (n) Absorption spectra of Ag NW@S-ZnO NRs and Ag NW@L-ZnO NRs and the inset shows the relationship between (αhv)2 and the photon energy (hv) of Ag NW@ZnO NRs.
Fig. 2. (a) Schematic illustration of Ag NW@S-ZnO NR-based UV detector. (b) UV-Vis optical transmittance spectra of Ag NW@S-ZnO NR thin films with different drop-coating times. The insets are corresponding SEM images of Ag NW@S-ZnO NRs network of PD1, PD2, and PD3. (c) Appearance of Ag NW@ZnO NRs film on HIT-logo paper.
Fig. 3. (a) Typical I-V characteristics of Ag NW@S-ZnO NR-based UV PDs with different drop-coating times in the dark and under UV light illumination (365 nm, 1.3 mW cm-2) when the bias voltage ranged from -5 to +5 V. (b) The sensitivity as a function of the voltage bias. (c) The switching characteristics measured at 5 V bias in dark and under UV illumination (365 nm, 1.3 mW cm-2). (d) The rise/decay time. (e) Photocurrent under different light intensities of PD2. (f) The linear relationship between light intensity and photocurrent, and its responsivity.
Fig. 5. The switching characteristics of UV PDs measured at 5 V bias under dark environment and UV illumination (365 nm, 1.3 mW cm-2) with different Ag NWs/ZnO NRs weight ratios: (a) PD4: 0%, (b) PD5: 0.4%, (c) PD6: 1.1%, (d) PD7: 1.8%. (e) Sensitivity. (f) Response time.
Fig. 6. (a) Photographs of Ag NW@S-ZnO NR-based UV PDs with different bending angles. (b) The switching performance measured at 5 V bias under 1.3 mW cm-2 illumination (365 nm) with different bending angles and after 1000 circles bending. (c) The corresponding response time.
Device structure | Size | Power | Bias | Sensitivity | Responsivity | Dark current | Rise time | Decay time | Transmittance | Self-powered | flexibility | Refs. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ZnO film | 2 mm | 60 mW cm-2 | 5 V | - | 2.16 A W-1 | - | 15 s | 330 s | 90% | no | no | [ |
ZnO NRs | 5 mm | 70 μW cm-2 | 0.5 V | 25 | - | 63.2 nA | 100 s | 120 s | - | no | yes | [ |
ZnO NWs | 20 μm | 77.5 μW cm-2 | 1 V | 2.5 × 105 | 7.5 × 106 A W-1 | 20 pA | 100 s | 50 s | - | no | yes | [ |
Ag NPs/ZnO NRs | - | 2.74 mW cm-2 | -4 V | 3628 | 99.54 A W-1 | - | 3.52 s | 0.33 s | - | no | yes | [ |
Ag NPs/ZnO NFs | - | 2.5 mW cm-2 | 0 V | 2.5 × 104 | 1280 μA W-1 | 0.02 pA | 3.90 s | 4.71 s | 89% | yes | yes | [ |
Graphene/ZnO NWs | 10 μm | 620 μW cm-2 | 0.1 V | 4200 | 347 A W-1 | - | 0.16 s | 0.19 s | - | no | no | [ |
CNT/ZnO NWs | 700 μm | 3 μW cm-2 | -2 V | 1.5 × 103 | 200 A W-1 | 2 nA | 14 s | 23 s | Semi-transparent | no | no | [ |
Cu NWs/ZnO thin film | - | 800 μW cm-2 | 1 V | - | - | - | 10.35 s | 2 s | - | no | no | [ |
ZnO/NiO film | 6 mm | 753 μW cm-2 | 0 V | - | 0.415 mA W-1 | 0.001 pA | 7.5 s | 4.8 s | 90% | yes | no | [ |
Ag NW@S-ZnO NRs (PD2) | 26 mm | 1.3 mW cm-2 | 5 V | ∼4 × 103 | 6.5 μA W-1 | ∼1 pA | 2.6 s | 2.3 s | 70% | yes | yes | This work |
Table 1. Summary of the performance of Ag NW@S-ZnO NR-based UV PDs and other ZnO hybrid-based UV PD.
Device structure | Size | Power | Bias | Sensitivity | Responsivity | Dark current | Rise time | Decay time | Transmittance | Self-powered | flexibility | Refs. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ZnO film | 2 mm | 60 mW cm-2 | 5 V | - | 2.16 A W-1 | - | 15 s | 330 s | 90% | no | no | [ |
ZnO NRs | 5 mm | 70 μW cm-2 | 0.5 V | 25 | - | 63.2 nA | 100 s | 120 s | - | no | yes | [ |
ZnO NWs | 20 μm | 77.5 μW cm-2 | 1 V | 2.5 × 105 | 7.5 × 106 A W-1 | 20 pA | 100 s | 50 s | - | no | yes | [ |
Ag NPs/ZnO NRs | - | 2.74 mW cm-2 | -4 V | 3628 | 99.54 A W-1 | - | 3.52 s | 0.33 s | - | no | yes | [ |
Ag NPs/ZnO NFs | - | 2.5 mW cm-2 | 0 V | 2.5 × 104 | 1280 μA W-1 | 0.02 pA | 3.90 s | 4.71 s | 89% | yes | yes | [ |
Graphene/ZnO NWs | 10 μm | 620 μW cm-2 | 0.1 V | 4200 | 347 A W-1 | - | 0.16 s | 0.19 s | - | no | no | [ |
CNT/ZnO NWs | 700 μm | 3 μW cm-2 | -2 V | 1.5 × 103 | 200 A W-1 | 2 nA | 14 s | 23 s | Semi-transparent | no | no | [ |
Cu NWs/ZnO thin film | - | 800 μW cm-2 | 1 V | - | - | - | 10.35 s | 2 s | - | no | no | [ |
ZnO/NiO film | 6 mm | 753 μW cm-2 | 0 V | - | 0.415 mA W-1 | 0.001 pA | 7.5 s | 4.8 s | 90% | yes | no | [ |
Ag NW@S-ZnO NRs (PD2) | 26 mm | 1.3 mW cm-2 | 5 V | ∼4 × 103 | 6.5 μA W-1 | ∼1 pA | 2.6 s | 2.3 s | 70% | yes | yes | This work |
[1] | B. Sun, Y. Sun, C. Wang, Small 14 (2018) 1703391. |
[2] | S. Pyo, J. Choi, J. Kim, Adv. Electron. Mater. 5 (2019) 1800737. |
[3] | X. Xu, J. Chen, S. Cai, Z. Long, Y. Zhang, L. Su, S. He, C. Tang, P. Liu, H. Peng, X. Fang, Adv. Mater. 30 (2018) 1803165. |
[4] | D.K. Ban, M. Patel, T.T. Nguyen, J. Kim, Adv. Electron. Mater. 5 (2019) 1900348. |
[5] | H. Li, L. Zhao, J. Meng, C. Pan, Y. Zhang, Y. Zhang, Z. Liu, Y. Zou, Y. Fan, Z.L. Wang, Z. Li, Nano Today 33 (2020) 100873. |
[6] | D. Kim, J.Y. Leem, Phys. Status Solidi A 216 (2019) 1800929. |
[7] |
J. Lu, C. Xu, J. Dai, J. Li, Y. Wang, Y. Lin, P. Li, Nanoscale 7 (2015) 3396-3403.
DOI URL |
[8] | Q. Fu, J. Peng, Z. Yao, H. Zhao, Z. Ma, H. Tao, Y. Tu, Y. Tian, D. Zhou, Y. Han, Appl. Surf. Sci. 527 (2020) 146923. |
[9] | Y. Chu, L. Ji, Y. Hsiao, H. Lu, S. Young, I. Tang, T. Chu, X. Chen, J. Electrochem. Soc. 167 (2020) 67506. |
[10] |
J. Song, S. Lim, J. Phys. Chem. C 111 (2007) 596-600.
DOI URL |
[11] |
J. Park, T.I. Lee, S. Hwang, J. Myoung, ACS Appl. Mater. Interfaces 6 (2014) 15638-15642.
DOI URL |
[12] |
D. You, C. Xu, W. Zhang, J. Zhao, F. Qin, Z. Shi, Nano Energy 62 (2019) 310-318.
DOI URL |
[13] | F. Wang, J. Jiang, Q. Liu, Y. Zhang, J. Wang, S. Wang, L. Han, H. Liu, Y. Sang, Nano Energy 70 (2020) 104457. |
[14] |
G. Luo, Z. Zhang, J. Jiang, Y. Liu, W. Li, J. Zhang, X. Hao, W. Wang, RSC Adv. 11 (2021) 7682-7692.
DOI URL |
[15] | R. Gill, S. Ghosh, A. Sharma, D. Kumar, V. Nguyen, D.N. Vo, T. Pham, P. Kumar, Mater. Lett. 277 (2020) 128295. |
[16] | X. Chen, B. Liu, C. Zhong, Z. Liu, J. Liu, L. Ma, Y. Deng, X. Han, T. Wu, W. Hu, J. Lu, Adv. Energy Mater. 7 (2017) 1700779. |
[17] |
Z. Zhang, K. Guo, Y. Li, X. Li, G. Guan, H. Li, Y. Luo, F. Zhao, Q. Zhang, B. Wei, Q. Pei, H. Peng, Nat. Photonics 9 (2015) 233-238.
DOI URL |
[18] |
B. Luo, Q. Zhao, Y. Zhang, L. Wang, F. Li, H. Xie, C.R. Cabrera, Mater. Lett. 233 (2018) 138-141.
DOI URL |
[19] |
P. Yao, C. Li, J. Yu, S. Zhang, M. Zhang, H. Liu, M. Ji, G. Cong, T. Zhang, C. Zhu, J. Mater. Sci. Technol. 85 (2021) 87-94.
DOI URL |
[20] | X. Zhang, J. Li, W. Yang, B. Leng, P. Niu, X. Jiang, B. Liu, ACS Appl. Mater. Inter- faces 11 (2019) 24459-24467. |
[21] |
M. Zhou, B. Wu, X. Zhang, S. Cao, P. Ma, K. Wang, Z. Fan, M. Su, ACS Appl. Mater. Interfaces 12 (2020) 38490-38498.
DOI URL |
[22] | W. Ouyang, F. Teng, J. He, X. Fang, Adv. Funct. Mater. 29 (2019) 1807672. |
[23] | H. Zheng, Y. Jiang, S. Yang, Y. Zhang, X. Yan, J. Hu, Y. Shi, B. Zou, J. Alloy. Compd. 812 (2020) 152158. |
[24] |
V.Q. Dang, T.Q. Trung, D. Kim, L.T. Duy, B. Hwang, D. Lee, B. Kim, L.D. Toan, N. Lee, Small 11 (2015) 3054-3065.
DOI URL |
[25] |
Y. Lee, D.Y. Kim, S. Lee, Nanomaterials 9 (2019) 799.
DOI URL |
[26] | G. Li, M. Suja, M. Chen, E. Bekyarova, R.C. Haddon, J. Liu, M.E. Itkis, ACS Appl. Mater. Interfaces 9 (2017) 37094-37104. |
[27] | D. Kwon, Y. Porte, K.Y. Ko, H. Kim, J. Myoung, ACS Appl. Mater. Interfaces 10 (2018) 31505-31514. |
[28] |
Z.S. Hosseini, H.A. Bafrani, A. Naseri, A.Z. Moshfegh, Appl. Surf. Sci. 483 (2019) 1110-1117.
DOI |
[29] |
Z. Zhang, Y. Ning, X. Fang, J. Mater. Chem. C 7 (2019) 223-229.
DOI URL |
[30] |
F. Teng, L. Zheng, K. Hu, H. Chen, Y. Li, Z. Zhang, X. Fang ,J. Mater. Chem. C 4 (2016) 8416-8421.
DOI URL |
[31] |
S.M. Hatch, J. Briscoe, S. Dunn, Adv. Mater. 25 (2013) 867-871.
DOI URL |
[32] |
F. Yin, H. Lu, H. Pan, H. Ji, S. Pei, H. Liu, J. Huang, J. Gu, M. Li, J. Wei, Sci. Rep. 9 (2019) 2403.
DOI URL |
[33] |
Y. Rui, W. Zhao, D. Zhu, H. Wang, G. Song, M. Swihart, N. Wan, D. Gu, X. Tang, Y. Yang, T. Zhang, Nanomaterials 8 (2018) 161.
DOI URL |
[34] |
B. Zhang, W. Li, J. Jiu, Y. Yang, J. Jing, K. Suganuma, C. Li, Inorg. Chem. 58 (2019) 3374-3381.
DOI URL |
[35] | C. Liu, X. Xu, C. Wang, G. Qiu, W. Ye, Y. Li, D. Wang, Sens. Actuators B 307 (2020) 127634. |
[36] |
S. Ameen, M.S. Akhtar, M. Song, H.S. Shin, ACS Appl. Mater. Interfaces 4 (2012) 4405-4412.
DOI URL |
[37] |
T.K. Pathak, R.E. Kroon, H.C. Swart, Vacuum 157 (2018) 508-513.
DOI URL |
[38] |
Z. Yin, S. Wu, X. Zhou, X. Huang, Q. Zhang, F. Boey, H. Zhang, Small 6 (2010) 307-312.
DOI URL |
[39] |
O. Lupan, T. Pauporté, L. Chow, B. Viana, F. Pellé, L.K. Ono, B. Roldan Cuenya, H. Heinrich, Appl. Surf. Sci. 256 (2010) 1895-1907.
DOI URL |
[40] |
J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, X. Zhang, Y. Dai, ACS Appl. Mater. Interfaces 4 (2012) 4024-4030.
DOI URL |
[41] | A. Aziz, N. Tiwale, S.A. Hodge, S.J. Attwood, G. Divitini, M.E. Welland, ACS Appl. Mater. Interfaces 10 (2018) 43817-43823. |
[42] |
Z. Yin, N. Chen, R. Dai, L. Liu, X. Zhang, X. Wang, J. Wu, C. Chai, J. Cryst. Growth 305 (2007) 296-301.
DOI URL |
[43] | I. Yao, T. Tseng, P. Lin, Sens. Actuators A 178 (2012) 26-31. |
[44] | M. Hoang Tran, T. Park, J. Hur, Appl. Surf. Sci. 539 (2021) 148222. |
[45] | K. Liu, M. Sakurai, M. Liao, M. Aono, J. Phys. Chem. C 114 (2010) 19835-19839. |
[46] | S. Abbas, M. Kumar, H. Kim, J. Kim, J. Lee, ACS Appl. Mater. Interfaces 10 (2018) 14292-14298. |
[47] |
F. Liang, J. Wang, Y. Wang, Y. Lin, L. Liang, Y. Gao, L. Luo, Appl. Surf. Sci. 426 (2017) 391-398.
DOI URL |
[48] |
U. Shaislamov, H. Lee, Crystengcomm 20 (2018) 7492-7501.
DOI URL |
[49] | Q. Xu, L. Cheng, L. Meng, Z. Wang, S. Bai, X. Tian, X. Jia, Y. Qin, ACS Appl. Mater. Interfaces 11 (2019) 26127-26133. |
[50] |
X. Wang, K. Liu, X. Chen, B. Li, M. Jiang, Z. Zhang, H. Zhao, D. Shen, ACS Appl. Mater. Interfaces 9 (2017) 5574-5579.
DOI URL |
[51] |
X. Liu, L. Gu, Q. Zhang, J. Wu, Y. Long, Z. Fan, Nat. Commun. 5 (2014) 4007.
DOI PMID |
[52] | Y. Ning, Z. Zhang, F. Teng, X. Fang, Small 14 (2018) 1703754. |
[1] | Hyunjun Park, Woong Kim, Sang Won Lee, Joohyung Park, Gyudo Lee, Dae Sung Yoon, Wonseok Lee, Jinsung Park. Flexible and disposable paper-based gas sensor using reduced graphene oxide/chitosan composite [J]. J. Mater. Sci. Technol., 2022, 101(0): 165-172. |
[2] | Xiaobei Zang, Li Lingtong, Jiaxin Meng, Lijia Liu, Yuanyuan Pan, Qingguo Shao, Ning Cao. Enhanced zinc storage performance of mixed valent manganese oxide for flexible coaxial fiber zinc-ion battery by limited reduction control [J]. J. Mater. Sci. Technol., 2021, 74(0): 52-59. |
[3] | Lin Tang, Junliang Zhang, Yusheng Tang, Jie Kong, Tianxi Liu, Junwei Gu. Polymer matrix wave-transparent composites: A review [J]. J. Mater. Sci. Technol., 2021, 75(0): 225-251. |
[4] | Xuemin Yin, Hejun Li, Ruimei Yuan, Jinhua Lu. Metal-organic framework derived hierarchical NiCo2O4 triangle nanosheet arrays@SiC nanowires network/carbon cloth for flexible hybrid supercapacitors [J]. J. Mater. Sci. Technol., 2021, 81(0): 162-174. |
[5] | Xinzhi Wang, Yao Wang, Xinbo Zhang, Wei Ding, Longlong Li, Linjun Huang, Laurence A. Belfiore, Jianguo Tang. Highly sensitive color fine-tuning of diblock copolymeric nano-aggregates with tri-metallic cations, Eu(III), Tb(III), and Zn(II), for flexible photoluminescence films (FPFs) [J]. J. Mater. Sci. Technol., 2021, 65(0): 72-81. |
[6] | Tariq Aziz, Yun Sun, Zu-Heng Wu, Mustafa Haider, Ting-Yu Qu, Azim Khan, Chao Zhen, Qi Liu, Hui-Ming Cheng, Dong-Ming Sun. A flexible nickel phthalocyanine resistive random access memory with multi-level data storage capability [J]. J. Mater. Sci. Technol., 2021, 86(0): 151-157. |
[7] | Jinming Hu, Shengyi Yang, Zhenheng Zhang, Hailong Li, Chandrasekar Perumal Veeramalai, Muhammad Sulaman, Muhammad Imran Saleem, Yi Tang, Yurong Jiang, Libin Tang, Bingsuo Zou. Solution-processed, flexible and broadband photodetector based on CsPbBr3/PbSe quantum dot heterostructures [J]. J. Mater. Sci. Technol., 2021, 68(0): 216-226. |
[8] | Tian-Yu Wang, Jia-Lin Meng, Qing-Xuan Li, Lin Chen, Hao Zhu, Qing-Qing Sun, Shi-Jin Ding, David Wei Zhang. Forming-free flexible memristor with multilevel storage for neuromorphic computing by full PVD technique [J]. J. Mater. Sci. Technol., 2021, 60(0): 21-26. |
[9] | Xiangfu Liu, Rongwen Wang, Jinming Ma, Jibin Zhang, Pengfei Jiang, Yao Wang, Guoli Tu. Durable metal-enhanced fluorescence flexible platform by in-situ growth of micropatterned Ag nanospheres [J]. J. Mater. Sci. Technol., 2021, 69(0): 89-95. |
[10] | Yiru Mao, Yixiang Wu, Pengju Zhang, Yang Yu, Zhizhu He, Qian Wang. Nanocellulose-based reusable liquid metal printed electronics fabricated by evaporation-induced transfer printing [J]. J. Mater. Sci. Technol., 2021, 61(0): 132-137. |
[11] | Dinesh J. Ahirrao, Ajay Kumar Pal, Vikalp Singh, Neetu Jha. Nanostructured porous polyaniline (PANI) coated carbon cloth (CC) as electrodes for flexible supercapacitor device [J]. J. Mater. Sci. Technol., 2021, 88(0): 168-182. |
[12] | Xiaofang Ye, Hongkun Cai, Jian Su, Jingtao Yang, Jian Ni, Juan Li, Jianjun Zhang. Preparation of hysteresis-free flexible perovskite solar cells via interfacial modification [J]. J. Mater. Sci. Technol., 2021, 61(0): 213-220. |
[13] | Pingping Yao, Chenyang Li, Jiali Yu, Shuo Zhang, Meng Zhang, Huichao Liu, Muwei Ji, Guangtao Cong, Tao Zhang, Caizhen Zhu, Jian Xu. High performance flexible energy storage device based on copper foam supported NiMoO4 nanosheets-CNTs-CuO nanowires composites with core-shell holey nanostructure [J]. J. Mater. Sci. Technol., 2021, 85(0): 87-94. |
[14] | Le Thai Duy, Ji-Ye Baek, Ye-Ji Mun, Hyungtak Seo. Patternable production of SrTiO3 nanoparticles using 1-W laser directly on flexible humidity sensor platform based on ITO/SrTiO3/CNT [J]. J. Mater. Sci. Technol., 2021, 71(0): 186-194. |
[15] | Boda Zheng, Qingsheng Zhu, Yang Zhao. Fabrication of high-quality silver nanowire conductive film and its application for transparent film heaters [J]. J. Mater. Sci. Technol., 2021, 71(0): 221-227. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||