J. Mater. Sci. Technol. ›› 2021, Vol. 86: 151-157.DOI: 10.1016/j.jmst.2021.02.008
• Research Article • Previous Articles Next Articles
Tariq Aziza,b, Yun Suna,c, Zu-Heng Wud, Mustafa Haidera,b,e, Ting-Yu Quf, Azim Khana,b, Chao Zhena,c, Qi Liug,**(), Hui-Ming Chenga,c,h, Dong-Ming Suna,c,*(
)
Received:
2020-12-07
Accepted:
2021-02-15
Published:
2021-09-30
Online:
2021-09-24
Contact:
Qi Liu,Dong-Ming Sun
About author:
**E-mail addresses: qi_liu@fudan.edu.cn (Q. Liu),Tariq Aziz, Yun Sun, Zu-Heng Wu, Mustafa Haider, Ting-Yu Qu, Azim Khan, Chao Zhen, Qi Liu, Hui-Ming Cheng, Dong-Ming Sun. A flexible nickel phthalocyanine resistive random access memory with multi-level data storage capability[J]. J. Mater. Sci. Technol., 2021, 86: 151-157.
Fig. 1. (a) Schematic of the chemical structure of a NiPc molecule. (b) Schematic of a NiPc RRAM device with two Au electrodes on a rigid or flexible substrate. (c) SEM image of the as-fabricated device with a resistive area of 25 μ m2. (d) AFM plot of the morphology of a 15-nm-thick NiPc film. (e) Typical I-V characteristics of the device indicating the bipolar SET and RESET processes. (f) Linear fitting for the I-V curve in a double logarithmic scale showing the corresponding slopes for each part.
Fig. 2. (a) Retention and (b) endurance characteristics of the NiPc RRAMs obtained in the LRS and HRS at a constant read voltage of 0.1 V. (c) Device-to-device cumulative probability of 100 individual NiPc RRAMs of VSET and VRESET. (d) Distribution of the LRS and the HRS of 90 RRAMs.
Fig. 3. (a-b) Operation speed during SET process under a sequence bias pulse. (b) The magnified region of (a) denoted by the blue dash line indicating Δt = ~50 ns. (c-d) Operation speed during RESET process. (d) The manified region of (c) denoted by the blue dash line.
Fig. 4. (a) Optical photograph of flexible NiPc RRAMs on a PEN substrate. Scale bar is 1 cm. (b) I-V characteristics of an individual NiPc RRAM at bending strains of 0 and 0.6 %. Resistance change in the HRS and the LRS of the flexible RRAM as a function of (c) bending strain and (d) number of bending cycles. (e) Schematic of a bending substrate for the characterization of memory device flexibility. (f) The relationship between the strain and stress extracted from the flexibility simulation.
Fig. 5. (a) I-V characteristics of a single NiPc RRAM with RESET stop voltages of -1 V, -1.3 V, -1.9 V and -2.2 V. (b) Retention and (c) endurance characteristics showing four distinct intermediate HRS levels. (d) Device-to-device cumulative probability of the LRS and the HRS of 200 individual NiPc RRAMs at each level.
[1] |
B.C.K. Tee, A. Chortos, A. Berndt, A.K. Nguyen, A. Tom, A. McGuire, Z.L.C. Lin, K. Tien, W.G. Bae, H.L. Wang, P. Mei, H.H. Chou, B.X. Cui, K. Deisseroth, T.N. Ng, Z.N. Bao, Science 350 (2015) 313-316.
DOI URL |
[2] |
C. Wang, D. Hwang, Z. Yu, K. Takei, J. Park, T. Chen, B. Ma, A. Javey, Nature Mater. 12(2013) 899-904.
DOI URL |
[3] |
T.Y. Qu, Y. Sun, M.L. Chen, Z.B. Liu, Q.B. Zhu, B.W. Wang, T.Y. Zhao, C. Liu, J. Tan, S . Qiu, Q.W. Li, Z. Han, W. Wang, H.M. Cheng, D.M. Sun, Adv. Mater. 32(2020), 1907288.
DOI URL |
[4] |
S. Kim, Y.K. Choi, Appl. Phys. Lett. 92(2008), 223508.
DOI URL |
[5] |
P.O. Vontobel, W. Robinett, P.J. Kuekes, D.R. Stewart, J. Straznicky, R.S. Williams, Nanotechnology 20 (2009), 425204.
DOI PMID |
[6] |
S.K. Hong, J.E. Kim, S.O. Kim, S.Y. Choi, B.J. Cho, IEEE Electron Dev. Lett. 31(2010) 1005.
DOI URL |
[7] |
H.Y. Jeong, J.Y. Kim, J.W. Kim, J.O. Hwang, J.E. Kim, J.Y. Lee, T.H. Yoon, B.J. Cho, S.O. Kim, R.S. Ruoff, S.Y. Choi, Nano Lett. 10(2010) 4381-4386.
DOI URL |
[8] |
R. Waser, M. Aono, Nature Mater. 6(2007) 833-840.
DOI URL |
[9] |
D. Jeong, R. Thomas, R.S. Katiyar, J.F. Scott, H. Kohlstedt, A. Petraru, C.S. Hwang, Rep. Prog. Phys. 75(2012), 076502.
DOI URL |
[10] |
J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, R.S. Williams, Nature Nanotech. 3(2008) 429-433.
DOI URL |
[11] |
K. Lian, R. Li, H. Wang, J. Zhang, D. Gamota, Mater. Sci. Eng. B 167 (2010) 12-16.
DOI URL |
[12] |
S.J. Kim, J.S. Lee, Nano Lett. 10(2010) 2884-2890.
DOI URL |
[13] |
Y. Burgt, E. Lubberman, E.J. Fuller, S.T. Keene, G.C. Faria, S. Agarwal, M.J. Marinella, A.A. Talin, A. Salleo, Nature Mater. 16(2017) 414-418.
DOI URL |
[14] | W. Chen, X. Yan, J. Mater. Sci 43(2020) 175-188. |
[15] | G. Torre, C.G. Claessens, T. Torres, Chem. Commun. 20(2007) 2000-2015. |
[16] |
C.D. Dimitrakopoulos, P.R.L. Malenfant, Adv. Mater. 14(2002) 99-117.
DOI URL |
[17] |
L.L. Chua, J. Zaumseil, J.F. Chang, E.C.W. Ou, P.K.H. Ho, H. Sirringhaus, R.H. Friend, Nature 434 (2005) 194-199.
DOI URL |
[18] |
H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 492 (2012) 234-238.
DOI URL |
[19] | M. Haider, C. Zhen, T. Wu, G. Liu, H.M. Cheng, J. Mater. Sci 34(2018) 1474-1480. |
[20] |
M. Haider, C. Zhen, T. Wu, J. Wu, C. Jia, G. Liu, H.M. Cheng, Chem. Commun. 55(2019) 5343-5346.
DOI URL |
[21] |
N. Padma, C.A. Betty, S. Samanta, A. Nigam, J. Phys. Chem. C 121 (2017) 5768-5778.
DOI URL |
[22] |
X. Guo, J. Liu, L. Cao, Q. Liang, S. Lei, ACS Omega 4 (2019) 10419-10423.
DOI URL |
[23] |
T.G. Abdel-Malik, R.M. Abdel-Latif, A.E. El-Samahy, S.M. Khalil, Thin Solid Films 256 (1995) 139-142.
DOI URL |
[24] |
T.D. Anthopoulos, T.S. Shafai, Phys. Stat. Sol.(a) 181(2000) 569-574.
DOI URL |
[25] |
M.M. El-Nahass, K.F. Abd El-Rahman, J. Alloy Compd. 430(2007) 194-199.
DOI URL |
[26] |
T.G. Abdel-Malik, A.A. Aly, A.M. Abdeen, H.M. El-Labany, Phys. Stat. Sol.(a) 76(1983) 651-659.
DOI URL |
[27] |
Q. Liu, W. Guan, S. Long, R. Jia, M. Liu, Appl. Phys. Lett. 92(2008), 012117.
DOI URL |
[28] |
G. McHale, M.I. Newton, P.D. Hooper, M.R. Willis, Opt. Mater. 6(1996) 89-92.
DOI URL |
[29] |
A.K. Hassan, R.D. Gould, Int. J. Electronics 74 (1993) 59-65.
DOI URL |
[30] |
A.K. Hassan, R.D. Gould, J. Phys.: Condens. Matter 1 (1989) 6679-6684.
DOI URL |
[31] |
Y.C. Yang, F. Pan, Q. Liu, M. Liu, F. Zeng, Nano Lett. 9(2009) 1636-1643.
DOI URL |
[32] | A. Lampert, P. Mark, New York, 1970. |
[33] |
Z. Zhang, Z. Wang, T. Shi, C. Bi, F. Rao, Y. Cai, Q. Liu, H. Wu, P. Zhou, InfoMat 2 (2020) 261-290.
DOI URL |
[1] | Xiangfu Liu, Rongwen Wang, Jinming Ma, Jibin Zhang, Pengfei Jiang, Yao Wang, Guoli Tu. Durable metal-enhanced fluorescence flexible platform by in-situ growth of micropatterned Ag nanospheres [J]. J. Mater. Sci. Technol., 2021, 69(0): 89-95. |
[2] | Pingping Yao, Chenyang Li, Jiali Yu, Shuo Zhang, Meng Zhang, Huichao Liu, Muwei Ji, Guangtao Cong, Tao Zhang, Caizhen Zhu, Jian Xu. High performance flexible energy storage device based on copper foam supported NiMoO4 nanosheets-CNTs-CuO nanowires composites with core-shell holey nanostructure [J]. J. Mater. Sci. Technol., 2021, 85(0): 87-94. |
[3] | Xiaobei Zang, Li Lingtong, Jiaxin Meng, Lijia Liu, Yuanyuan Pan, Qingguo Shao, Ning Cao. Enhanced zinc storage performance of mixed valent manganese oxide for flexible coaxial fiber zinc-ion battery by limited reduction control [J]. J. Mater. Sci. Technol., 2021, 74(0): 52-59. |
[4] | Xuemin Yin, Hejun Li, Ruimei Yuan, Jinhua Lu. Metal-organic framework derived hierarchical NiCo2O4 triangle nanosheet arrays@SiC nanowires network/carbon cloth for flexible hybrid supercapacitors [J]. J. Mater. Sci. Technol., 2021, 81(0): 162-174. |
[5] | Tian-Yu Wang, Jia-Lin Meng, Qing-Xuan Li, Lin Chen, Hao Zhu, Qing-Qing Sun, Shi-Jin Ding, David Wei Zhang. Forming-free flexible memristor with multilevel storage for neuromorphic computing by full PVD technique [J]. J. Mater. Sci. Technol., 2021, 60(0): 21-26. |
[6] | Yiru Mao, Yixiang Wu, Pengju Zhang, Yang Yu, Zhizhu He, Qian Wang. Nanocellulose-based reusable liquid metal printed electronics fabricated by evaporation-induced transfer printing [J]. J. Mater. Sci. Technol., 2021, 61(0): 132-137. |
[7] | Le Thai Duy, Ji-Ye Baek, Ye-Ji Mun, Hyungtak Seo. Patternable production of SrTiO3 nanoparticles using 1-W laser directly on flexible humidity sensor platform based on ITO/SrTiO3/CNT [J]. J. Mater. Sci. Technol., 2021, 71(0): 186-194. |
[8] | Liyuan Han, Qiang Song, Kezhi Li, Xuemin Yin, Jiajia Sun, Hejun Li, Fengpei Zhang, Xinran Ren, Xi Wang. Hierarchical, seamless, edge-rich nanocarbon hybrid foams for highly efficient electromagnetic-interference shielding [J]. J. Mater. Sci. Technol., 2021, 72(0): 154-161. |
[9] | Jinming Hu, Shengyi Yang, Zhenheng Zhang, Hailong Li, Chandrasekar Perumal Veeramalai, Muhammad Sulaman, Muhammad Imran Saleem, Yi Tang, Yurong Jiang, Libin Tang, Bingsuo Zou. Solution-processed, flexible and broadband photodetector based on CsPbBr3/PbSe quantum dot heterostructures [J]. J. Mater. Sci. Technol., 2021, 68(0): 216-226. |
[10] | Xinzhi Wang, Yao Wang, Xinbo Zhang, Wei Ding, Longlong Li, Linjun Huang, Laurence A. Belfiore, Jianguo Tang. Highly sensitive color fine-tuning of diblock copolymeric nano-aggregates with tri-metallic cations, Eu(III), Tb(III), and Zn(II), for flexible photoluminescence films (FPFs) [J]. J. Mater. Sci. Technol., 2021, 65(0): 72-81. |
[11] | Xiaofang Ye, Hongkun Cai, Jian Su, Jingtao Yang, Jian Ni, Juan Li, Jianjun Zhang. Preparation of hysteresis-free flexible perovskite solar cells via interfacial modification [J]. J. Mater. Sci. Technol., 2021, 61(0): 213-220. |
[12] | Min Guo, Cheng Yang, Dong Gao, Qiang Li, Aihua Zhang, Jiajun Feng, Hui Yang, Ruiqiang Tao, Zhen Fan, Min Zeng, Guofu Zhou, Xubing Lu, J.- M. Liu. A flexible and high temperature tolerant strain sensor of La0.7Sr0.3MnO3/Mica [J]. J. Mater. Sci. Technol., 2020, 44(0): 42-47. |
[13] | Zhuosen Wang, Xijun Xu, Shaomin Ji, Zhengbo Liu, Dechao Zhang, Jiadong Shen, Jun Liu. Recent progress of flexible sulfur cathode based on carbon host for lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2020, 55(0): 56-72. |
[14] | Xu-Ping Wu, Xue-Mei Luo, Hong-Lei Chen, Ji-Peng Zou, Guang-Ping Zhang. A unified model for determining fracture strain of metal films on flexible substrates [J]. J. Mater. Sci. Technol., 2020, 54(0): 87-94. |
[15] | Ying Li, Jixiang Qiao, Yang Zhao, Qing Lan, Pengyan Mao, Jianhang Qiu, Kaiping Tai, Chang Liu, Huiming Cheng. A flexible thermoelectric device based on a Bi2Te3-carbon nanotube hybrid [J]. J. Mater. Sci. Technol., 2020, 58(0): 80-85. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||