J. Mater. Sci. Technol. ›› 2022, Vol. 121: 256-262.DOI: 10.1016/j.jmst.2021.12.069
• Research Article • Previous Articles
Zhi-Gang Chena,*(), Wei-Di Liub,*(
)
Received:
2021-12-06
Revised:
2021-12-22
Accepted:
2021-12-23
Published:
2022-09-10
Online:
2022-03-18
Contact:
Zhi-Gang Chen,Wei-Di Liu
About author:
weidi.liu@uq.net.au (W.-D. Liu).Zhi-Gang Chen, Wei-Di Liu. Thermoelectric coolers: Infinite potentials for finite localized microchip cooling[J]. J. Mater. Sci. Technol., 2022, 121: 256-262.
Fig. 1. (a) Schematic diagram showing key element for electronic devices are microchips, which are composed of condensed transistor formed integrated circuits. (b) Number of transistor-counts per microchip as a function of released years. (c) Number of transistor density per microelectronic chip as a function of released years.
Fig. 2. (a) Schematic diagram of a thermoelectric cooler composed of p-n junctions connected in series functioning under an external power source. (b) Schematic diagram presents the mechanism of heat transfer from cold side to hot side of a p-n junction under an external power supply.
Fig. 3. Relationship between cooling COP and the hot- and cold-side temperature difference (ΔT) of a Peltier cooler in comparison with the vapor compression cycle refrigerating, where the hot-side temperature is set at 300 K.
Fig. 4. Schematic diagram of typical thermoelectric cooler performance engineering strategies: (a) Fermi level (EF) optimization for thermoelectric material dimensionless figure of merit (T) enhancement, where CB is short for conduction band and VB is short for Valence band, (b) hierarchical architecture engineering introducing structure defects of various scales (such as point defects, nano precipitates, grain boundaries, interfaces etc.) for full-wavelength phonon scattering to achieve low material lattice thermal conductivity, (c) thermoelectric leg geometry design for thermoelectric cooler performance optimization [58] (Copyright, 2018 Wiley Library [58]) and (d) joint layer design for low contact electrical and thermal resistance of thermoelectric coolers [59]. (Copyright, 2011 Elsevier [59].).
Fig. 5. (a) Temperature difference generated by a bulk Sn0.91Pb0.09Se-based thermoelectric device composed of 31 pairs of p-n junctions, compared with the Bi0.5Sb1.5Te3-device, where both n-type legs are commercial Bi2Te3-based ones. (Copyright, 2021 Science, distributed under the terms of the Science Journals Default License [1].) (b) Temperature difference of a bulk single-leg Sn0.91Pb0.09Se-based thermoelectric device as a function of current in comparison with commercial Bi0.5Sb1.5Te3- and SnTe-based devices while used for cooling, where inset is the Photograph [1]. (Copyright, 2021 Science, distributed under the terms of the Science Journals Default License [1].) (c) Schematic diagram of a typical thin-film thermoelectric device, including the thermoelectric arrays, a dielectric layer and integrated heat spreader, corresponding (d) photograph and (e) cooling performance indicated by the hot-spot temperature [60]. (Copyright, 2009 Nature Springer [60].).
[1] | B. Qin, D. Wang, X. Liu, Y. Qin, J.F. Dong, J. Luo, J.W. Li, W. Liu, G. Tan, X. Tang, J.F. Li, J. He, L.D. Zhao, Science 373 (2021) |
[2] | D.A.B. Miller, P. IEEE. 88 (2000) |
[3] | N. Hardavellas, M. Ferdman, B. Falsafi, A. Ailamaki, IEEE. Micro. 31 (2011) |
[4] | K. Ahmed, K. Schuegraf, IEEE Spectr. 48 (2011) |
[5] | M. Gomaa, M.D. Powell, T.N Vijaykumar, in: Proceedings of the 11th interna-tional conference on Architectural support for programming languages and op-erating systems, Association for Computing Machinery, Boston, MA, USA, 2004. |
[6] | M. Santamouris, D. Kolokotsa, Energ. Build. 57 (2013) |
[7] | Z. He, Z. Peng, P. Eles, presented at 2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010), 8-12 March 2010. |
[8] | C. Varnava, Nature Electronics 3 (2020) |
[9] | Q. Sun, M. Li, X.L. Shi, S.D. Xu, W.D. Liu, M. Hong, W.Y. Lyu, Y. Yin, M. Dargusch, J. Zou, Z.G. Chen, Adv. Energy Mater. 11 (2021) |
[10] | W.D. Liu, Y. Yu, M. Dargusch, Q. Liu, Z.G. Chen, Renew. Sust. Energ. Rev. 141 (2021) |
[11] | L.C. Yin, W.D. Liu, X.L. Shi, H. Gao, M. Li, D.Z. Wang, H. Wu, L. Kou, H. Guo, Y. Wang, Q. Liu, Z.G. Chen, Chem. Eng. J. (2021) |
[12] | M. Tan, X.L. Shi, W.D. Liu, M. Li, Y.L. Wang, H. Li, Y. Deng, Z.G. Chen, Adv. En-ergy Mater. 11 (2021) |
[13] | Y. Zheng, X.L. Shi, H. Yuan, S. Lu, X. Qu, W.D. Liu, L. Wang, K. Zheng, J. Zou, Z.G. Chen, Mater. Today Phys. 13 (2020) |
[14] | Y. Wang, W.D. Liu, X.L. Shi, M. Hong, L.J. Wang, M. Li, H. Wang, J. Zou, Z.G. Chen, Chem. Eng. J. 391 (2020) |
[15] | Y. Wang, M. Hong, W.D. Liu, X.L. Shi, S.D. Xu, Q. Sun, H. Gao, S. Lu, J. Zou, Z.G. Chen, Chem. Eng. J. 397 (2020) |
[16] | W.D. Liu, L. Yang, Z.G. Chen, Nano Today 35 (2020) |
[17] | W.D. Liu, L. Yang, Z.G. Chen, J. Zou, Adv. Mater. 32 (2020) |
[18] | W.D. Liu, D.Z. Wang, Q. Liu, W. Zhou, Z. Shao, Z.G. Chen, Adv. Energy Mater. 10 (2020) 20 0 0367. |
[19] | M. Dargusch, W.D. Liu, Z.G. Chen, Adv. Sci. 7 (2020) |
[20] | Y. Wang, W.D. Liu, H. Gao, L.J. Wang, M. Li, X.L. Shi, M. Hong, H. Wang, J. Zou, Z.G. Chen, ACS Appl. Mater. Interf. 11 (2019) |
[21] | W.D. Liu, Z.G. Chen, J. Zou, Adv. Energy Mater. 8 (2018) 180 0 056. |
[22] | Y.X. Chen, X.L. Shi, Z.H. Zheng, F. Li, W.D. Liu, W.Y. Chen, X.R. Li, G.X. Liang, J.T. Luo, P. Fan, Z.G. Chen, Mater. Today Phys. 16 (2021) |
[23] | S.D. Xu, M. Hong, X.L. Shi, M. Li, Q. Sun, Q.X. Chen, M. Dargusch, J. Zou, Z.G. Chen, Energy Environ. Sci. 13 (2020) |
[24] | H. Wang, X. Liu, B. Zhang, L. Huang, M. Yang, X. Zhang, H. Zhang, G. Wang, X. Zhou, G. Han, Chem. Eng. J. 393 (2020) |
[25] | M. Li, M. Hong, X. Tang, Q. Sun, W.Y. Lyu, S.D. Xu, L.Z. Kou, M. Dargusch, J. Zou, Z.G. Chen, Nano Energy 73 (2020) |
[26] |
M. Li, M. Hong, M. Dargusch, J. Zou, Z.G. Chen, Trend Chem. 3 (2021) 561-574.
DOI URL |
[27] | M. Li, S. M.K.N. Islam, M. Yahyaoglu, D. Pan, X. Shi, L. Chen, U. Aydemir, X. Wang, Info. Mat. 1 (2019) |
[28] | S.M.K. Nazrul Islam, M. Li, U. Aydemir, X. Shi, L. Chen, G.J. Snyder, X. Wang, J. Mater. Chem. A 6 (2018) |
[29] | M. Li, D.L. Cortie, J. Liu, D. Yu, S.M.K.N. Islam, L. Zhao, D.R.G. Mitchell, R.A. Mole, M.B. Cortie, S. Dou, X. Wang, Nano Energy 53 (2018) |
[30] | L. Zhao, S. M.K.N. Islam, J. Wang, D.L. Cortie, X. Wang, Z. Cheng, J. Wang, N. Ye, S. Dou, X. Shi, L. Chen, G.J. Snyder, X. Wang, Nano Energy 41 (2017) |
[31] | S. Roychowdhury, T. Ghosh, R. Arora, M. Samanta, L. Xie, N.K. Singh, A. Soni, J. He, U.V. Waghmare, K. Biswas, Science 371 (2021) |
[32] | M. Samanta, K. Pal, U.V. Waghmare, K. Biswas, Angew. Chem. Int. Ed. 59 (2020) |
[33] | H.S. Kim, W. Liu, G. Chen, C.W. Chu, Z. Ren, P. Natl, Acad. Sci. 112 (2015) |
[34] | G.J. Snyder, S. LeBlanc, D. Crane, H. Pangborn, C.E. Forest, A. Rattner, L. Borgsmiller, S. Priya, Joule 5 (2021) |
[35] | J. Pei, B. Cai, H.L. Zhuang, J.F. Li, Natl. Sci. Rev. 7 (2020) |
[36] | B. Cai, H.L. Zhuang, Q. Cao, H. Hu, J. Dong, J.F.Li Asfandiyar, ACS Appl. Mater. Interf. 12 (2020) |
[37] | Y. Pan, Y. Qiu, I. Witting, L. Zhang, C. Fu, J.W. Li, Y. Huang, F.H. Sun, J. He, G.J. Snyder, C. Felser, J.F. Li, Energy Environ. Sci. 12 (2019) |
[38] | Y. Pan, U. Aydemir, J.A. Grovogui, I.T. Witting, R. Hanus, Y. Xu, J. Wu, C.F. Wu, F.H. Sun, H.L. Zhuang, J.F. Dong, J.F. Li, V.P. Dravid, G.J. Snyder, Adv. Mater. 30 (2018) |
[39] | S.I. Kim, K.H. Lee, H.A. Mun, H.S. Kim, S.W. Hwang, J.W. Roh, D.J. Yang, W.H. Shin, X.S. Li, Y.H. Lee, G.J. Snyder, S.W. Kim, Science 348 (2015) |
[40] | H. Choi, K. Jeong, J. Chae, H. Park, J. Baeck, T.H. Kim, J.Y. Song, J. Park, K.H. Jeong, M.H. Cho, Nano Energy 47 (2018) |
[41] | J. Lim, K. Choi, H. Kim, T. Jackson, D. Kenny, presented at 2006 IEEE Interna-tional Frequency Control Symposium and Exposition, 4-7 June, 2006. |
[42] | Y. Xiao, D. Wang, Y. Zhang, C. Chen, S. Zhang, K. Wang, G. Wang, S.J. Pennycook, G.J. Snyder, H. Wu, L.D. Zhao, J. Am. Chem. Soc. 142 (2020) |
[43] | Y. Pei, H. Wang, G.J. Snyder, Adv. Mater. 24 (2012) |
[44] | H. Zhu, W. Sun, R. Armiento, P. Lazic, G. Ceder, Appl. Phys. Lett. 104 (2014) |
[45] | X. Zhang, Y. Pei, NPJ Quant. Mater. 2 (2017) |
[46] | J.P. Heremans, B. Wiendlocha, A.M. Chamoire, Energy Environ. Sci. 5 (2012) |
[47] | Q. Zhang, B.L. Liao, Y.C. Lan, K. Lukas, W.S. Liu, K. Esfarjani, C. Opeil, D. Broido, G. Chen, Z.F. Ren, Proc. Natl. Acad. Sci. U.S.A. 110 (2013) |
[48] | J.P. Makongo, D.K. Misra, X. Zhou, A. Pant, M.R. Shabetai, X. Su, C. Uher, K.L. Stokes, P.F. Poudeu, J. Am. Chem. Soc. 133 (2011) |
[49] | N. Neophytou, M. Thesberg, J. Comput. Electron. 15 (2016) |
[50] | D. Yang, X. Su, J. Li, H. Bai, S. Wang, Z. Li, H. Tang, K. Tang, T. Luo, Y. Yan, J. Wu, J. Yang, Q. Zhang, C. Uher, M.G. Kanatzidis, X. Tang, Adv. Mater. 32 (2020) |
[51] | B. Jiang, Y. Yu, J. Cui, X. Liu, L. Xie, J. Liao, Q. Zhang, Y. Huang, S. Ning, B. Jia, B. Zhu, S. Bai, L. Chen, S.J. Pennycook, J. He, Science 371 (2021) |
[52] | B. Zhu, X. Liu, Q. Wang, Y. Qiu, Z. Shu, Z. Guo, Y. Tong, J. Cui, M. Gu, J. He, Energy Environ. Sci. 13 (2020) |
[53] | L. Hu, T. Zhu, X. Liu, X. Zhao, Adv. Funct. Mater. 24 (2014) |
[54] | C.F. Wu, H. Wang, Q.M. Yan, T.R. Wei, J.F. Li, J. Mater. Chem. C 5 (2017) |
[55] | Y. Lan, A.J. Minnich, G. Chen, Z. Ren, Adv. Funct. Mater. 20 (2010) |
[56] | B. Qin, Y. Zhang, D. Wang, Q. Zhao, B. Gu, H. Wu, H. Zhang, B. Ye, S.J. Penny-cook, L.D. Zhao, J. Am. Chem. Soc. 142 (2020) |
[57] | M. Xi, H. Zhu, H. Wu, Y. Yang, Y. Yan, G. Wang, G. Wang, J. Li, X. Lu, X. Zhou, Chem. Eng. J. 396 (2020) |
[58] | R. He, G. Schierning, K. Nielsch, Adv. Mater. Technol. 3 (2018) |
[59] | W.P. Lin, D.E. Wesolowski, C.C. Lee, J. Mater. Sci-mater. EI 22 (2011) |
[60] | I. Chowdhury, R. Prasher, K. Lofgreen, G. Chrysler, S. Narasimhan, R. Ma-hajan, D. Koester, R. Alley, R. Venkatasubramanian, Nat. Nano. 4 (2009) |
[1] | Ping Zhang, Zhihao Lou, Mengjie Qin, Jie Xu, Jiatong Zhu, Zongmo Shi, Qian Chen, Michael J. Reece, Haixue Yan, Feng Gao. High-entropy (Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3 perovskite ceramics with A-site short-range disorder for thermoelectric applications [J]. J. Mater. Sci. Technol., 2022, 97(0): 182-189. |
[2] | Song Yang, Yong Hu. Inverse dependence of exchange bias and coercivity on cooling field caused by interfacial randomization in nanosystems with Co sparsely distributed in CoFe2O4 matrix [J]. J. Mater. Sci. Technol., 2022, 98(0): 258-267. |
[3] | Qing Wang, Zhiliang Li, Xiaofeng Yang, Xin Qian, Linjuan Guo, Jianglong Wang, Dan Zhang, Shu-Fang Wang. Improving electrical and thermal properties synchronously via introducing CsPbBr3 QDs into higher manganese silicides [J]. J. Mater. Sci. Technol., 2022, 111(0): 279-286. |
[4] | Yue Dong, Xingang Liu, Junjie Zou, Yujiao Ke, Pengwei Liu, Lan Ma, Hengjun Luo. Effect of cooling rate following β forging on texture evolution and variant selection during β → α transformation in Ti-55511 alloy [J]. J. Mater. Sci. Technol., 2022, 113(0): 1-13. |
[5] | Xindong Qin, Jiliang Xu, Zhengwang Zhu, Zhengkun Li, Dawei Fang, Huameng Fu, Shiming Zhang, Haifeng Zhang. Co78Si8B14 metallic glass: A highly efficient and ultra-sustainable Fenton-like catalyst in degrading wastewater under universal pH conditions [J]. J. Mater. Sci. Technol., 2022, 113(0): 105-116. |
[6] | Chen Chen, Yanzhou Fan, Wei Wang, Hang Zhang, Jialiang Hou, Ran Wei, Tao Zhang, Tan Wang, Mo Li, Shaokang Guan, Fushan Li. Synthesis of ultrafine dual-phase structure in CrFeCoNiAl0.6 high entropy alloy via solid-state phase transformation during sub-rapid solidification [J]. J. Mater. Sci. Technol., 2022, 113(0): 253-260. |
[7] | De-Zhuang Wang, Wei-Di Liu, Xiao-Lei Shi, Han Gao, Hao Wu, Liang-Cao Yin, Yuewen Zhang, Yifeng Wang, Xueping Wu, Qingfeng Liu, Zhi-Gang Chen. Se-alloying reducing lattice thermal conductivity of Ge0.95Bi0.05Te [J]. J. Mater. Sci. Technol., 2022, 106(0): 249-256. |
[8] | Changshu He, Ying Li, Jingxun Wei, Zhiqiang Zhang, Ni Tian, Gaowu Qin, Xiang Zhao. Enhancing the mechanical performance of Al-Zn-Mg alloy builds fabricated via underwater friction stir additive manufacturing and post-processing aging [J]. J. Mater. Sci. Technol., 2022, 108(0): 26-36. |
[9] | Mohan Reddy Pallavolu, Arghya Narayan Banerjee, Ramesh Reddy Nallapureddy, Sang W. Joo. Urea-assisted hydrothermal synthesis of MnMoO4/MnCO3 hybrid electrochemical electrode and fabrication of high-performance asymmetric supercapacitor [J]. J. Mater. Sci. Technol., 2022, 96(0): 332-344. |
[10] | W.L. Wang, W.Q. Liu, X. Yang, R.R. Xu, Q.Y. Dai. Multi-scale simulation of columnar-to-equiaxed transition during laser selective melting of rare earth magnesium alloy [J]. J. Mater. Sci. Technol., 2022, 119(0): 11-24. |
[11] | Jiahui Li, Yvonne Durandet, Xiaodong Huang, Guangyong Sun, Dong Ruan. Additively manufactured fiber-reinforced composites: A review of mechanical behavior and opportunities [J]. J. Mater. Sci. Technol., 2022, 119(0): 219-244. |
[12] | Xiaofang Liu, Hengyang Wang, Bin Zhang, Sikang Zheng, Yao Chen, Hong Zhang, Xianhua Chen, Guoyu Wang, Xiaoyuan Zhou, Guang Han. Attaining enhanced thermoelectric performance in p-type (SnSe)1-x(SnS2)x produced via sintering their solution-synthesized micro/nanostructures [J]. J. Mater. Sci. Technol., 2022, 120(0): 205-213. |
[13] | Xin-Yu Mao, Xiao-Lei Shi, Liang-Chuang Zhai, Wei-Di Liu, Yue-Xing Chen, HanGao , Meng Li, De-Zhuang Wang, Hao Wu, Zhuang-Hao Zheng, Yi-Feng Wang, Qingfeng Liu, Zhi-Gang Chen. High thermoelectric and mechanical performance in the n-type polycrystalline SnSe incorporated with multi-walled carbon nanotubes [J]. J. Mater. Sci. Technol., 2022, 114(0): 55-61. |
[14] | Yifeng Wang, Yilin Song, Kaikai Song, Lin Pan, Changchun Chen, Kunihito Koumoto, Qingfeng Liu. Enhanced thermoelectric performance of n-type Bi2Te2.7Se0.3 via a simple liquid-assisted shear exfoliation [J]. J. Mater. Sci. Technol., 2022, 117(0): 251-258. |
[15] | Xuan Zhao, Zehong Chen, Hao Zhuo, Yijie Hu, Ge Shi, Bing Wang, Haihong Lai, Sherif Araby, WenjiaHan , Xinwen Peng, Linxin Zhong. Thermoelectric generator based on anisotropic wood aerogel for low-grade heat energy harvesting [J]. J. Mater. Sci. Technol., 2022, 120(0): 150-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||