J. Mater. Sci. Technol. ›› 2022, Vol. 120: 150-158.DOI: 10.1016/j.jmst.2021.12.039
• Research Article • Previous Articles Next Articles
Xuan Zhaoa, Zehong Chena, Hao Zhuoa, Yijie Hua, Ge Shia, Bing Wanga, Haihong Laia, Sherif Arabyb, WenjiaHan c, Xinwen Penga, Linxin Zhonga,*()
Received:
2021-10-25
Revised:
2021-12-05
Accepted:
2021-12-08
Published:
2022-09-01
Online:
2022-03-12
Contact:
Linxin Zhong
About author:
* E-mail address: lxzhong0611@scut.edu.cn (L. Zhong).Xuan Zhao, Zehong Chen, Hao Zhuo, Yijie Hu, Ge Shi, Bing Wang, Haihong Lai, Sherif Araby, WenjiaHan , Xinwen Peng, Linxin Zhong. Thermoelectric generator based on anisotropic wood aerogel for low-grade heat energy harvesting[J]. J. Mater. Sci. Technol., 2022, 120: 150-158.
Fig. 1. Illustration of the fabrication of a thermoelectric wood aerogel for harvesting waste heat by loading CNT/PEDOT composite material in delignified wood.
Fig. 2. (a) Photograph, SEM images of (b) transverse and (c) longitudinal sections of natural wood. (d) Photograph and (e) SEM images of wood aerogel. (f) Relative contents of cellulose, hemicellulose, and lignin in natural wood and delignified wood. (g) Nano-CT images of CNT wood aerogel (green and red parts represent wood aerogel frame and CNT, respectively). (h) Photograph and (i) SEM images of CNT/PEDOT wood aerogel (scale bar of inset: 1 μm). (j) SEM images of CNT wood aerogel (scale bar of inset: 1 μm). (k) EDX mapping images of CNT/PEDOT wood aerogel. (l) FT-IR spectra of wood aerogel, PEDOT wood aerogel, and CNT/PEDOT wood aerogel. (m) Schematic illustration of the oxidative chemical deposition of PEDOT and the microstructure of CNT/PEDOT.
Fig. 3. Thermoelectric properties of TE wood aerogel. (a) Seebeck coefficient (S), (b) electrical conductivity (σ), and power factor (PF) of CNT/PEDOT wood aerogel along x-direction and z-direction, respectively. (c) Schematic illustration of the anisotropic structure and electron transport path of CNT/PEDOT wood aerogel. (d) Function of FeTos concentration on Seebeck coefficient and electrical conductivity of CNT/PEDOT wood aerogel. (e) Seebeck coefficient and electrical conductivity, and (f) power factor of CNT/PEI wood aerogel as the function of PEI concentration. (g) Thermoelectric performances of pristine CNT wood aerogel, p-type (CNT/PEDOT) wood aerogel, and n-type (CNT/PEI) wood aerogel along the z-direction. (h) Electrical conductivity and Seebeck coefficient of CNT/PEDOT wood aerogel at different compression strains along the x-direction.
Thermoelectric materials | S (μV K-1) | σ (S cm-1) | к (W m-1 K-1) | ZT | Refs. |
---|---|---|---|---|---|
PEDOT/SWCNT/BC nanoporous film | 20.3 | 290.6 | 0.13 | 2.8 × 10-2 | [ |
CNT/FeCl3 foam | 33.4 | 6.58 | 0.42 | 5.2 × 10-4 | [ |
CNT/PU sponge | 38.9 | 0.07 | 0.05 | 3.8 × 10-5 | [ |
CNT/cellulose aerogel | 21 | 0.07 | 0.04 | 2.3 × 10-5 | [ |
CNT/PEDOT wood aerogel | 31.37 | 501.14 | 0.17 | 8.7 × 10-2 | This work |
CNT/PEI wood aerogel | -29.3 | 98.06 | 0.12 | 2.1 × 10-2 | This work |
Table 1. Thermoelectric properties of thermoelectric composite materials at room temperature (~300 K).
Thermoelectric materials | S (μV K-1) | σ (S cm-1) | к (W m-1 K-1) | ZT | Refs. |
---|---|---|---|---|---|
PEDOT/SWCNT/BC nanoporous film | 20.3 | 290.6 | 0.13 | 2.8 × 10-2 | [ |
CNT/FeCl3 foam | 33.4 | 6.58 | 0.42 | 5.2 × 10-4 | [ |
CNT/PU sponge | 38.9 | 0.07 | 0.05 | 3.8 × 10-5 | [ |
CNT/cellulose aerogel | 21 | 0.07 | 0.04 | 2.3 × 10-5 | [ |
CNT/PEDOT wood aerogel | 31.37 | 501.14 | 0.17 | 8.7 × 10-2 | This work |
CNT/PEI wood aerogel | -29.3 | 98.06 | 0.12 | 2.1 × 10-2 | This work |
Fig. 4. Output performance of TEG prototype. (a) Schematic illustration of the fabrication of TE wood aerogel generator (scale bar of inset: 4 cm). (b) Output voltage and output power depending on the temperature difference. (c) Output power and output voltage as a function of output current at various temperature differences. FEA results show (d) the temperature and (e) the potential distribution of the TEG with single pair of the p-n junction.
Fig. 5. (a) Open-circuit voltage and (b) photothermal response of TEG prototype under solar irradiation. (c) TEG prototype charges supercapacitors with different capacitors at ultra-low temperatures. (d) Open-circuit voltage of TEG prototype when placed on the table. (e) Voltage generated by touching one side of the TEG using a hand. (f) Schematic illustration of the TEG continuously powering for smart homes and wearable electronic devices.
Fig. 6. Compression and sensing properties of CNT/PEDOT wood aerogels. (a) Stress-strain curves at different strains. (b) Fatigue resistance at 30% strain for 1000 cycles. (c) Normalized resistance at 30% strain. (d) Current response to different compression strains. (e) Current stability at 30% strain for 1000 cycles. (f) Current signal from wrist bending.
[1] | J.H. Xu, H. Wang, X.S. Du, X. Cheng, Z.L. Du, H.B. Wang, ACS Appl. Mater. Inter- faces 13 (2021) 20427-20434. |
[2] |
S. Zhao, R. Nivetha, Y. Qiu, X.H. Guo, Chin. Chem. Lett. 31 (2020) 947-952.
DOI URL |
[3] |
Z.X. Wei, B. Ding, H. Dou, J. Gascon, X.J. Kong, Y.J. Xiong, B. Cai, R.Y. Zhang, Y. Zhou, M.C. Long, J. Miao, Y.H. Dou, D. Yuan, J.M. Ma, Chin. Chem. Lett. 30 (2019) 2110-2122.
DOI URL |
[4] |
V. Vallem, Y. Sargolzaeiaval, M. Ozturk, Y.C. Lai, M.D. Dickey, Adv. Mater. 33 (2021) 2004832.
DOI URL |
[5] |
Y.Z. Fang, B.W. Yang, D.T. He, H.P. Li, K. Zhu, L. Wu, K. Ye, K. Cheng, J. Yan, G.L. Wang, D.X. Cao, Chin. Chem. Lett. 31 (2020) 1004-1008.
DOI URL |
[6] |
Q.Y. Shan, W.C. Huo, M. Shen, C. Jing, Y. Peng, H.Y. Pu, Y.X. Zhang, Chin. Chem. Lett. 31 (2020) 2245-2248.
DOI URL |
[7] |
C.W. Peng, J. Yu, S.H. Chen, L. Wang, Chin. Chem. Lett. 30 (2019) 1137-1140.
DOI URL |
[8] |
B.Y. Yu, J.J. Duan, H.J. Cong, W.K. Xie, R. Liu, X.Y. Zhuang, H. Wang, B. Qi, M. Xu, Z.L. Wang, J. Zhou, Science 370 (2020) 342-346.
DOI URL |
[9] |
S.R. Pu, Y.T. Liao, K. Chen, J. Fu, S.L. Zhang, L.R. Ge, G. Conta, S. Bouzarif, T. Cheng, X.J. Hu, K. Liu, J. Chen, Nano Lett. 20 (2020) 3791-3797.
DOI URL |
[10] |
T.S. Yan, T.X. Li, J.X. Xu, J.W. Chao, R.Z. Wang, Y.I. Aristov, L.G. Gordeeva, P. Dutta, S.S. Murthy, ACS Energy Lett. 6 (2021) 1795-1802.
DOI URL |
[11] |
L. Zhang, X.L. Shi, Y.L. Yang, Z.G. Chen, Mater. Today 46 (2021) 62-108.
DOI URL |
[12] |
Y.L. Fang, H.L. Cheng, H. He, S. Wang, J.M. Li, S.Z. Yue, L. Zhang, Z.L. Du, J. Ouyang, Adv. Funct. Mater. 30 (2020) 2004699.
DOI URL |
[13] |
C.G. Han, X. Qian, Q.K. Li, B. Deng, Y.B. Zhu, Z.J. Han, W.Q. Zhang, W.C. Wang, S.P. Feng, G. Chen, W.S. Liu, Science 368 (2020) 1091-1098.
DOI URL |
[14] | T.P. Ding, K.H. Chan, Y. Zhou, X.Q. Wang, Y. Cheng, T.T. Li, G.W. Ho, Nat. Com- mun. 11 (2020) 6006. |
[15] |
Y.Y. Zheng, Q.H. Zhang, W.L. Jin, Y.Y. Jing, X.Y. Chen, X. Han, Q.Y. Bao, Y.P. Liu, X.H. Wang, S.R. Wang, Y.P. Qiu, C.A. Di, K. Zhang, J. Mater. Chem. A 8 (2020) 2984-2994.
DOI URL |
[16] | X. Zhang, L.D. Zhao, J. Mater. 1 (2015) 92-105. |
[17] |
X.L. Shi, J. Zou, Z.G. Chen, Chem. Rev. 120 (2020) 7399-7515.
DOI URL |
[18] |
Y. Lu, Y. Qiu, K.F. Cai, Y.F. Ding, M.D. Wang, C. Jiang, Q. Yao, C.J. Huang, L.D. Chen, J.Q. He, Energy Environ. Sci. 13 (2020) 1240-1249.
DOI URL |
[19] |
D.Y. Bao, J. Chen, Y. Yu, W.D. Liu, L.S. Huang, G. Han, J. Tang, D.L. Zhou, L. Yang, Z.G. Chen, Chem. Eng. J. 388 (2020) 124295.
DOI URL |
[20] |
B. Lee, H. Cho, K.T. Park, J.S. Kim, M. Park, H. Kim, Y. Hong, S. Chung, Nat. Commun. 11 (2020) 5948.
DOI URL |
[21] |
W. Ren, Y. Sun, D.L. Zhao, A. Aili, S. Zhang, C.Q. Shi, J.L. Zhang, H.Y. Geng, J. Zhang, L.X. Zhang, J.L. Xiao, R.G. Yang, Sci. Adv. 7 (2021) eabe0586.
DOI URL |
[22] |
Y. Yang, H.J. Hu, Z.Y. Chen, Z.Y. Wang, L.M. Jiang, G.X. Lu, X.J. Li, R.M. Chen, J. Jin, H.C. Kang, H.X. Chen, S. Lin, S.Q. Xiao, H.Y. Zhao, R. Xiong, J. Shi, Q.F. Zhou, S. Xu, Y. Chen, Nano Lett. 20 (2020) 4445-4453.
DOI URL PMID |
[23] |
C.Y. Zhang, Q. Zhang, D. Zhang, M.Y. Wang, Y.W. Bo, X.Q. Fan, F.C. Li, J.J. Liang, Y. Huang, R.J. Ma, Y.S. Chen, Nano Lett. 21 (2021) 1047-1055.
DOI URL |
[24] |
Y.J. Jeong, J. Jung, E.H. Suh, D.J. Yun, J.G. Oh, J. Jang, Adv. Funct. Mater. 30 (2019) 1905809.
DOI URL |
[25] |
D. Abol Fotouh, B. Dorling, O. Zapata Arteaga, X. Rodriguez Martinez, A. Gomez, J.S. Reparaz, A. Laromaine, A. Roig, M. Campoy Quiles, Energy Environ. Sci. 12 (2019) 716-726.
DOI URL |
[26] |
J.L. Blackburn, A.J. Ferguson, C. Cho, J.C. Grunlan, Adv. Mater. 30 (2018) 1704386.
DOI URL |
[27] |
N. Kim, S. Lienemann, I. Petsagkourakis, D. Alemu Mengistie, S. Kee, T. Ederth, V. Gueskine, P. Leclere, R. Lazzaroni, X. Crispin, K. Tybrandt, Nat. Commun. 11 (2020) 1424.
DOI URL |
[28] |
P. Cataldi, M. Cassinelli, J.A. Heredia Guerrero, S. Guzman Puyol, S. Nader- izadeh, A. Athanassiou, M. Caironi, Adv. Funct. Mater. 30 (2019) 1907301.
DOI URL |
[29] |
S. Kee, M.A. Haque, D. Corzo, H.N. Alshareef, D. Baran, Adv. Funct. Mater. 29 (2019) 1905426.
DOI URL |
[30] |
T.G. Novak, K. Kim, S. Jeon, Nanoscale 11 (2019) 19684-19699.
DOI URL |
[31] |
J. Oh, J.H. Kim, K.T. Park, K. Jo, J.C. Lee, H. Kim, J.G. Son, Nanoscale 10 (2018) 18370-18377.
DOI URL |
[32] |
T.T. Sun, B.Y. Zhou, Q. Zheng, L.J. Wang, W. Jiang, G.J. Snyder, Nat. Commun. 11 (2020) 572.
DOI URL |
[33] |
T.P. Ding, L.L. Zhu, X.Q. Wang, K.H. Chan, X. Lu, Y. Cheng, G.W. Ho, Adv. Energy Mater. 8 (2018) 1802397.
DOI URL |
[34] | F. Jia, R.L. Wu, C. Liu, J.L. Lan, Y.H. Lin, X.P. Yang, ACS Sustain. Chem. Eng. 7 (2019) 12591-12600. |
[35] |
Y.Q. Liu, S. Zhang, Y.T. Zhou, M.A. Buckingham, L. Aldous, P.C. Sherrell, G.G. Wallace, G. Ryder, S. Faisal, D.L. Officer, S. Beirne, J. Chen, Adv. Energy Mater. 10 (2020) 2002539.
DOI URL |
[36] |
M.H. Lee, Y.H. Kang, J. Kim, Y.K. Lee, S.Y. Cho, Adv. Energy Mater. 9 (2019) 1900914.
DOI URL |
[37] |
J. Kim, E.J. Bae, Y.H. Kang, C. Lee, S.Y. Cho, Nano Energy 74 (2020) 104824.
DOI URL |
[38] |
H. Cheng, Y.R. Du, B.J. Wang, Z.P. Mao, H. Xu, L.P. Zhang, Y. Zhong, W. Jiang, L.J. Wang, X.F. Sui, Chem. Eng. J. 338 (2018) 1-7.
DOI URL |
[39] |
H. Ju, K. Kim, D. Park, J. Kim, Chem. Eng. J. 335 (2018) 560-566.
DOI URL |
[40] |
C.J. Chen, J.W. Song, S.Z. Zhu, Y.J. Li, Y.D. Kuang, J.Y. Wan, D. Kirsch, L.S. Xu, Y.B. Wang, T.T. Gao, Y.L. Wang, H. Huang, W.T. Gan, A. Gong, T. Li, J. Xie, L.B. Hu, Chem 4 (2018) 544-554.
DOI URL |
[41] |
T. Li, X. Zhang, S.D. Lacey, R.Y. Mi, X.P. Zhao, F. Jiang, J.W. Song, Z.Q. Liu, G. Chen, J.Q. Dai, Y.G. Yao, S. Das, R.G. Yang, R.M. Briber, L.B. Hu, Nat. Mater. 18 (2019) 608-613.
DOI URL |
[42] |
C.J. Chen, L.B. Hu, Adv. Mater. 33 (2021) 2002890.
DOI URL |
[43] |
W.T. Gan, C.J. Chen, M. Giroux, G. Zhong, M.M. Goyal, Y.L. Wang, W.W. Ping, J.W. Song, S.M. Xu, S.M. He, M.L. Jiao, C. Wang, L. Hu, Chem. Mater. 32 (2020) 5280-5289.
DOI URL |
[44] |
J.Y. Wan, J.W. Song, Z. Yang, D. Kirsch, C. Jia, R. Xu, J.Q. Dai, M.W. Zhu, L.S. Xu, C.J. Chen, Y.B. Wang, Y.L. Wang, E. Hitz, S.D. Lacey, Y.F. Li, B. Yang, L.B. Hu, Adv. Mater. 29 (2017) 1703331.
DOI URL |
[45] |
X.F. Wang, J. Fang, W.W. Zhu, C.X. Zhong, D.D. Ye, M.Y. Zhu, X. Lu, Y.S. Zhao, F.Z. Ren, Adv. Funct. Mater. 31 (2021) 2010068.
DOI URL |
[46] |
M.H. Wang, X.X. Wang, P. Moni, A. Liu, D.H. Kim, W.J. Jo, H. Sojoudi, K.K. Glea- son, Adv. Mater. 29 (2017) 1604606.
DOI URL |
[47] |
C. Yu, A. Murali, K. Choi, Y. Ryu, Energy Environ. Sci. 5 (2012) 9481-9486.
DOI URL |
[48] |
H.Z. Geng, K.K. Kim, K.P. So, Y.S. Lee, Y. Chang, Y.H. Lee, J. Am. Chem. Soc. 129 (2007) 7758-7759.
DOI URL |
[49] |
F.L. Meng, M.M. Gao, T.P. Ding, G. Yilmaz, W.L. Ong, G.W. Ho, Adv. Funct. Mater. 30 (2020) 2002867.
DOI URL |
[50] |
T.P. Ding, G.W. Ho, Joule 5 (2021) 1639-1641.
DOI URL |
[51] |
T.P. Ding, Y. Zhou, L.O. Wei, G.W. Ho, Mater. Today 42 (2021) 178-191.
DOI URL |
[52] |
Y. Zhou, T.P. Ding, M.M. Gao, K.H. Chan, Y. Cheng, J.Q. He, G.W. Ho, Nano Energy 77 (2020) 105102.
DOI URL |
[53] |
Z.X. Niu, W.Z. Yuan, ACS Sustain. Chem. Eng. 7 (2019) 17523-17534.
DOI URL |
[54] |
L.L. Zhu, T.P. Ding, M.M. Gao, C.K.N. Peh, G.W. Ho, Adv. Energy Mater. 9 (2019) 1900250.
DOI URL |
[55] |
Y. Zhang, R.W. Lu, S.F. Zhang, B.T. Tang, Chem. Eng. J. 423 (2021) 130260.
DOI URL |
[56] |
J.F. Serrano-Claumarchirant, I. Brotons-Alcázar, M. Culebras, M.J. Sanchis, A. Cantarero, R. Muñoz-Espí, C.M. Gómez, ACS Appl. Mater. Interfaces 12 (2020) 46348-46356.
DOI URL |
[57] |
Y.H. Jia, L.L. Shen, J. Liu, W.Q. Zhou, Y.K. Du, J.K. Xu, C.C. Liu, G. Zhang, Z.S. Zhang, F.X. Jiang, J. Mater. Chem. C 7 (2019) 3496-3502.
DOI URL |
[58] |
X.D. Wang, L.R. Liang, H.C. Lv, Y.C. Zhang, G.M. Chen, Nano Energy 90 (2021) 106577.
DOI URL |
[1] | Shuang Liu, Mengjie Sheng, Hao Wu, Xuetao Shi, Xiang Lu, Jinping Qu. Biological porous carbon encapsulated polyethylene glycol-based phase change composites for integrated electromagnetic interference shielding and thermal management capabilities [J]. J. Mater. Sci. Technol., 2022, 113(0): 147-157. |
[2] | Ying Li, Jixiang Qiao, Yang Zhao, Qing Lan, Pengyan Mao, Jianhang Qiu, Kaiping Tai, Chang Liu, Huiming Cheng. A flexible thermoelectric device based on a Bi2Te3-carbon nanotube hybrid [J]. J. Mater. Sci. Technol., 2020, 58(0): 80-85. |
[3] | Tao Liu, Caizhen Zhu, Wei Wu, Kai-Ning Liao, Xianjing Gong, Qijun Sun, Robert K.Y. Li. Facilely prepared layer-by-layer graphene membrane-based pressure sensor with high sensitivity and stability for smart wearable devices [J]. J. Mater. Sci. Technol., 2020, 45(0): 241-247. |
[4] | Dong Youming,Yan Yutao,Ma Huandi,Zhang Shifeng,Li Jianzhang,Xia Changlei,Q. Shi Sheldon,Cai Liping. In-Situ Chemosynthesis of ZnO Nanoparticles to Endow Wood with Antibacterial and UV-Resistance Properties [J]. J. Mater. Sci. Technol., 2017, 33(3): 266-270. |
[5] | Kaimo Deng, Liang Li. Low-Temperature and Surfactant-Free Synthesis of Mesoporous TiO2 Sub-Micron Spheres for Efficient Dye-Sensitized Solar Cells [J]. J. Mater. Sci. Technol., 2016, 32(1): 17-23. |
[6] | Yan-Jia Liou, Wu-Jang Huang. Quantitative Analysis of Graphene Sheet Content in Wood Char Powders during Catalytic Pyrolysis [J]. J. Mater. Sci. Technol., 2013, 29(5): 406-410. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||