J. Mater. Sci. Technol. ›› 2021, Vol. 62: 195-202.DOI: 10.1016/j.jmst.2020.06.009
• Research Article • Previous Articles Next Articles
Yongsheng Liu, Jiaying Jin*(), Tianyu Ma*(
), Baixing Peng, Xinhua Wang, Mi Yan*(
)
Received:
2020-02-22
Revised:
2020-04-22
Accepted:
2020-06-04
Published:
2021-01-30
Online:
2021-02-01
Contact:
Jiaying Jin,Tianyu Ma,Mi Yan
About author:
mse yanmi@zju.edu.cn (M. Yan).Yongsheng Liu, Jiaying Jin, Tianyu Ma, Baixing Peng, Xinhua Wang, Mi Yan. Promoting the La solution in 2:14: 1-type compound: Resultant chemical deviation and microstructural nanoheterogeneity[J]. J. Mater. Sci. Technol., 2021, 62: 195-202.
Fig. 1. (a) Rietveld refinement of XRD profiles for [(La35Ce65)x(Pr20Nd80)1-x]2.14Fe14B powders (x = 0.6, 0.7, 0.8, 0.9, 1.0) at room temperature. The black dots show the observed experimental data and the red full line represents the calculated fits. Blue line shows the difference between the fitted and observed results. Bragg positions of RE2Fe14B, α-Fe and RE-rich phases are indicated by bottom red, blue and black vertical bars. (b) Dependence of lattice parameters c, a, c/a ratio and unit cell volume V of 2:14:1 phase on the La-Ce content x. (c) XRD patterns for quenched samples after annealing for 1 h at 1273 K.
La-Ce content x | Lattice parameters | R factors | |||||
---|---|---|---|---|---|---|---|
a (Å) | c (Å) | V (Å3) | c/a | Rp | Rwp | χ2 | |
0.6 | 8.799 | 12.212 | 945.627 | 1.388 | 5.469 | 7.335 | 9.138 |
0.7 | 8.796 | 12.212 | 944.756 | 1.388 | 4.262 | 5.476 | 5.951 |
0.8 | 8.795 | 12.211 | 944.541 | 1.388 | 4.904 | 6.267 | 5.294 |
0.9 | 8.793 | 12.210 | 944.091 | 1.389 | 4.755 | 6.028 | 6.770 |
1.0 | 8.789 | 12.205 | 942.663 | 1.389 | 5.674 | 7.442 | 8.024 |
Table 1 Refined values of lattice parameters and reliability R factors for the [(La35Ce65)x(Pr20Nd80)1-x]2.14Fe14B samples.
La-Ce content x | Lattice parameters | R factors | |||||
---|---|---|---|---|---|---|---|
a (Å) | c (Å) | V (Å3) | c/a | Rp | Rwp | χ2 | |
0.6 | 8.799 | 12.212 | 945.627 | 1.388 | 5.469 | 7.335 | 9.138 |
0.7 | 8.796 | 12.212 | 944.756 | 1.388 | 4.262 | 5.476 | 5.951 |
0.8 | 8.795 | 12.211 | 944.541 | 1.388 | 4.904 | 6.267 | 5.294 |
0.9 | 8.793 | 12.210 | 944.091 | 1.389 | 4.755 | 6.028 | 6.770 |
1.0 | 8.789 | 12.205 | 942.663 | 1.389 | 5.674 | 7.442 | 8.024 |
Fig. 2. Back-scattered SEM images and corresponding elemental mappings for [(La35Ce65)x(Pr20Nd80)1-x]2.14Fe14B strips with x = 0.6 (a), x = 0.8 (b), x = 1.0 (c). Red “+” symbols in the matrix phase indicate the selected positions for concentration detection.
Fig. 3. Comparison of the detected La/TRE, Ce/TRE, Pr/TRE and Nd/TRE in the 2:14:1 phase (solid symbols) and the nominal ones (unfilled symbols) for different strips. Here TRE means the total rare earth concentration.
Fig. 4. TEM characterizations for the [(La35Ce65)0.6(Pr20Nd80)0.4]2.14Fe14B strip. (a) BFI taken with the [100]T incidence of the 2:14:1 phase. (b) SAED pattern for region indicated by yellow dashed circle in (a). (c) HRTEM image taken from the red square region in (a). (d)-(i) STEM-EDS mappings of Fe, La, Ce, Pr and Nd.
Fig. 5. TEM characterizations for the[(La35Ce65)0.8(Pr20Nd80)0.2]2.14Fe14B strip. (a) BFI taken with the [100]T incidence. (b) and (c) are SAED patterns taken from the yellow dashed circle region in (a) along two different zone axes. (d) HRTEM image. (e) and (f) are Fast Fourier transformation (FFT) pattern and inversed FFT image of region indicated by red dashed square in (d), exhibiting diffraction spot splitting and local lattice mismatch features due to the spinodal-decomposition-like phase segregation. (g) Schematic illustration of such spot splitting. (h) and (i) FFT and inversed FFT images taken from another typical region indicated by blue dashed square in (d) to further demonstrate the nanoscale phase separation.
Fig. 6. TEM characterizations for the (La35Ce65)2.14Fe14B strip. (a) BFI taken with the [121]T incidence. (b) and (c) SAED patterns for two regions indicated by yellow dashed and blue dashed circles in (a), corresponding to 2:14:1 tetragonal phase and α-Fe phase, respectively. (d) HRTEM image of 2:14:1 tetragonal phase region indicated by yellow dashed circle in (a). (e) and (f) FFT and inversed FFT images of region indicated by red dashed square in (d), where no spot splitting is observed.
Fig. 7. (a) Thermomagnetic curves for the [(La35Ce65)x(Pr20Nd80)1-x]2.14Fe14B (x = 0.6, 0.7, 0.8, 0.9, 1.0) strips upon heating from 300 K to 623 K. (b) Comparison of the measured Curie temperature of the 2:14:1 phase (solid symbols) and the ones estimated from the nominal composition based on the rule of mixture (unfilled symbols) for different strips.
[1] |
M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto, Y. Matsuura, J. Appl. Phys. 55 (1984) 2083-2087.
DOI URL |
[2] |
J.F. Herbst, Rev. Mod. Phys. 63 (1991) 819-898.
DOI URL |
[3] |
K. Hono, H. Sepehri-Amin, Scr. Mater. 154 (2018) 277-283.
DOI URL |
[4] |
o. Gutfleisch, M.A. Willard, E. Brück, C.H. Chen, S.G. Sankar, J.P. Liu, Adv. Mater. 23 (2011) 821-842.
DOI URL PMID |
[5] |
J.Y. Jin, T.Y. Ma, Y.J. Zhang, G.H. Bai, M. Yan, Sci. Rep. 6 (2016) 32200.
DOI URL PMID |
[6] |
K. Binnemans, P.T. Jones, T. Müller, L. Yurramendi, J. Sustain. Metall. 4 (2018) 126-146.
DOI URL |
[7] |
Z.B. Li, M. Zhang, B.G. Shen, F.X. Hu, J.R. Sun, Mater. Lett. 172 (2016) 102-104.
DOI URL |
[8] |
J.F. Herbst, M.S. Meyer, F.E. Pinkerton, J. Appl. Phys. 111 (2012), 07A718.
DOI URL |
[9] |
A.K. Pathak, M. Khan, K.A. Gschneidner Jr, R.W. McCallum, L. Zhou, K. Sun, M.J. Kramer, V.K. Pecharsky, Acta Mater. 103 (2016) 211-216.
DOI URL |
[10] |
J.Y. Jin, Z.H. Zhang, L.Z. Zhao, B.X. Peng, Y.S. Liu, J.M. Greneche, M. Yan, Scr. Mater. 170 (2019) 150-153.
DOI URL |
[11] |
Y.J. Zhang, T.Y. Ma, J.Y. Jin, J.T. Li, C. Wu, B.G. Shen, M. Yan, Acta Mater. 128 (2017) 22-30.
DOI URL |
[12] |
J.Y. Jin, M. Yan, Y.S. Liu, B.X. Peng, G.H. Bai, Acta Mater. 169 (2019) 248-259.
DOI URL |
[13] |
X.D. Fan, G.F. Ding, K. Chen, S. Guo, C.Y. You, R.J. Chen, D. Lee, A.R. Yan, Acta Mater. 154 (2018) 343-354.
DOI URL |
[14] |
E. Niu, Z.A. Chen, G.A. Chen, Y.G. Zhao, J. Zhang, X.L. Rao, B.P. Hu, Z.X. Wang, J. Appl. Phys 115 (2014), 113912.
DOI URL |
[15] |
Q.Z. Jiang, Z.C. Zhong, J. Mater. Sci. Technol. 33 (2017) 1087-1096.
DOI URL |
[16] |
J.S. Zhang, W. Li, X.F. Liao, H.Y. Yu, L.Z. Zhao, H.X. Zeng, D.R. Peng, Z.W. Liu, J. Mater. Sci. Technol. 35 (2019) 1877-1885.
DOI URL |
[17] |
R.S. Lai, R.J. Chen, W.Z. Yin, X. Tang, Z.X. Wang, C.X. Jin, D. Lee, A.R. Yan, J. Alloys Compd. 724 (2017) 275-279.
DOI URL |
[18] |
W.L. Zuo, S.L. Zuo, R. Li, T.Y. Zhao, F.X. Hu, J.R. Sun, X.F. Zhang, J.P. Liu, B.G. Shen, J. Alloys Compd. 695 (2017) 1786-1792.
DOI URL |
[19] |
Y.L. Huang, Z.H. Li, X.J. Ge, Z.Q. Shi, Y.H. Hou, G.P. Wang, Z.W. Liu, Z.C. Zhong, J. Alloys Compd. 797 (2019) 1133-1141.
DOI URL |
[20] |
Q.C. Quan, L.L. Zhang, Q.Z. Jiang, W.K. Lei, Q.W. Zeng, X.J. Hu, L. Wang, X. Yu, J.F. Du, G. Fu, R.H. Liu, M.L. Zhong, Z.C. Zhong, J. Magn. Magn. Mater. 442 (2017) 377-382.
DOI URL |
[21] |
T.W. Capehart, R.K. Mishra, C.D. Fuerst, G.P. Meisner, F.E. Pinkerton, J.F. Herbst, Phys. Rev. B 55 (1997) 11496.
DOI URL |
[22] |
G.C. Hadjipanayis, Y.F. Tao, K. Gudimetta, Appl. Phys. Lett. 47 (1985) 757-758.
DOI URL |
[23] |
D.H. Templeton, C.H. Dauben, J. Am. Chem. Soc. 76 (1954) 5237-5239.
DOI URL |
[24] |
X.B. Liu, Z. Altounian, M.D. Huang, Q.M. Zhang, J.P. Liu, J. Alloys Compd. 549 (2013) 366-369.
DOI URL |
[25] | Z. Li, W.Q. Liu, S.S. Zha, Y.Q. Li, Y.Q. Wang, D.T. Zhang, M. Yue, J.X. Zhang, J. Rare Earths 33 (2015) 961-964. |
[26] |
R. Li, R.X. Shang, J.F. Xiong, D. Liu, H. Kuang, W.L. Zuo, T.Y. Zhao, J.R. Sun, B.G. Shen, AIP Adv. 7 (2017), 056207.
DOI URL |
[27] |
N.T. Quan, Y. Luo, W.L. Yan, C. Yuan, D.B. Yu, L. Sun, S. Lu, H.W. Li, H.B. Zhang, J. Magn. Magn. Mater. 437 (2017) 12-16.
DOI URL |
[28] | Q.R. Yao, Y.H. Shen, P.C. Yang, H.Y. Zhou, G.H. Rao, J.Q. Deng, Z.M. Wang, Y. Zhong, J. Rare Earths 34 (2016) 1121-1125. |
[29] |
M. Zhang, Z.B. Li, B.G. Shen, F.X. Hu, J.R. Sun, J. Alloys Compd. 651 (2015) 144-148.
DOI URL |
[30] |
X.F. Liao, L.Z. Zhao, J.S. Zhang, G. Ahmed, A.J. Khan, H.X. Zeng, H.Y. Yu, X.C. Zhong, Z.W. Liu, G.Q. Zhang, Curr. Appl. Phys. 19 (2019) 733-738.
DOI URL |
[31] |
X. Lin, Y. Luo, H.J. Peng, Y.F. Yang, Y.K. Dou, Z.L. Wang, K.S. Xu, S.L. Diao, D.B. Yu, J. Magn. Magn. Mater. 490 (2019), 165454.
DOI URL |
[32] |
J.Y. Jin, Y.J. Zhang, G.H. Bai, Z.Y. Qian, C. Wu, T.Y. Ma, B.G. Shen, M. Yan, Sci. Rep. 6 (2016) 30194.
DOI URL PMID |
[33] |
M. Okada, S. Sugimoto, C. Ishizaka, T. Tanaka, M. Homma, J. Appl. Phys. 57 (1985) 4146-4148.
DOI URL |
[34] |
Z.B. Li, B.G. Shen, M. Zhang, F.X. Hu, J.R. Sun, J. Alloys Compd. 628 (2015) 325-328.
DOI URL |
[35] |
S. Guo, R.J. Chen, B. Zheng, G.H. Yan, D. Lee, A.R. Yan, IEEE Trans. Magn. 47 (2011) 3267-3269.
DOI URL |
[36] |
I. Khan, J.S. Hong, J. Korean Phys. Soc. 69 (2016) 1564-1570.
DOI URL |
[37] | W. Tang, Y.Q. Wu, K.W. Dennis, N.T. Oster, M.J. Kramer, I.E. Anderson, R.W. McCallum, J. Korean Phys. Soc. 109 (2011), 07A704. |
[38] |
X.Z. Li, W.Y. Zhang, D.J. Sellmyer, Acta Mater. 140 (2017) 188-195.
DOI URL |
[39] |
L. Zhou, W. Tang, L.Q. Ke, W. Guo, J.D. Poplawsky, I.E. Anderson, M.J. Kramer, Acta Mater. 133 (2017) 73-80.
DOI URL |
[40] |
L. Zhou, M.K. Miller, P. Lu, L.Q. Ke, R. Skomski, H. Dillon, Q. Xing, A. Palasyuk, M.R. McCartney, D.J. Smith, S. Constantinides, R.W. McCallum, I.E. Anderson, V. Antropov, M.J. Kramer, Acta Mater. 74 (2014) 224-233.
DOI URL |
[41] |
F. Findik, Mater. Des. 42 (2012) 131-146.
DOI URL |
[42] |
E. Burzo, Rep. Prog. Phys. 61 (1998) 1099-1266.
DOI URL |
[43] |
C.V. Colin, M. Ito, M. Yano, N.M. Dempsey, E. Suard, D. Givord, Appl. Phys. Lett. 108 (2016), 242415.
DOI URL |
[44] |
A. Alam, M. Khan, R.W. McCallum, D.D. Johnson, Appl. Phys. Lett. 102 (2013), 042402.
DOI URL |
[45] |
L.Q. Yu, M. Yan, J.M. Wu, W. Luo, X.G. Cui, H.G. Ying, Physica B. 393 (2007) 1-5.
DOI URL |
[1] | Wen Zhang, Lei Chen, Chenguang Xu, Wenyu Lu, Yujin Wang, Jiahu Ouyang, Yu Zhou. Densification, microstructure and mechanical properties of multicomponent (TiZrHfNbTaMo)C ceramic prepared by pressureless sintering [J]. J. Mater. Sci. Technol., 2021, 72(0): 23-28. |
[2] | Zhihong Wu, Hongchao Kou, Nana Chen, Zhixin Zhang, Fengming Qiang, Jiangkun Fan, Bin Tang, Jinshan Li. Microstructural influences on the high cycle fatigue life dispersion and damage mechanism in a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 12-23. |
[3] | Qingqing Li, Yong Zhang, Jie Chen, Bugao Guo, Weicheng Wang, Yuhai Jing, Yong Liu. Effect of ultrasonic micro-forging treatment on microstructure and mechanical properties of GH3039 superalloy processed by directed energy deposition [J]. J. Mater. Sci. Technol., 2021, 70(0): 185-196. |
[4] | R. Liu, P. Zhang, Z.J. Zhang, B. Wang, Z.F. Zhang. A practical model for efficient anti-fatigue design and selection of metallic materials: II. Parameter analysis and fatigue strength improvement [J]. J. Mater. Sci. Technol., 2021, 70(0): 250-267. |
[5] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[6] | Xuefeng Liao, Jiasheng Zhang, Jiayi He, Wenbing Fan, Hongya Yu, Xichun Zhong, Zhongwu Liu. Development of cost-effective nanocrystalline multi-component (Ce,La,Y)-Fe-B permanent magnetic alloys containing no critical rare earth elements of Dy, Tb, Pr and Nd [J]. J. Mater. Sci. Technol., 2021, 76(0): 215-221. |
[7] | Xiong-jie Gu, Wei-li Cheng, Shi-ming Cheng, Yan-hui Liu, Zhi-feng Wang, Hui Yu, Ze-qin Cui, Li-fei Wang, Hong-xia Wang. Tailoring the microstructure and improving the discharge properties of dilute Mg-Sn-Mn-Ca alloy as anode for Mg-air battery through homogenization prior to extrusion [J]. J. Mater. Sci. Technol., 2021, 60(0): 77-89. |
[8] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[9] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[10] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[11] | K.J. Tan, X.G. Wang, J.J. Liang, J. Meng, Y.Z. Zhou, X.F. Sun. Effects of rejuvenation heat treatment on microstructure and creep property of a Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 206-215. |
[12] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
[13] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[14] | Zijuan Xu, Zhongtao Li, Yang Tong, Weidong Zhang, Zhenggang Wu. Microstructural and mechanical behavior of a CoCrFeNiCu4 non-equiatomic high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 35-43. |
[15] | B.N. Du, Z.Y. Hu, L.Y. Sheng, D.K. Xu, Y.X. Qiao, B.J. Wang, J. Wang, Y.F. Zheng, T.F. Xi. Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys [J]. J. Mater. Sci. Technol., 2021, 60(0): 44-55. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||