J. Mater. Sci. Technol. ›› 2021, Vol. 62: 180-194.DOI: 10.1016/j.jmst.2020.04.063
• Invited Review • Previous Articles Next Articles
Hairui Xinga,b, Ping Hua,b,*(), Shilei Lia,b, Yegai Zuoa, Jiayu Hana, Xingjiang Huaa, Kuaishe Wanga,b,*(
), Fan Yanga,b, Pengfa Fengb,c, Tian Changd
Received:
2020-03-05
Revised:
2020-04-18
Accepted:
2020-04-20
Published:
2021-01-30
Online:
2021-02-01
Contact:
Ping Hu,Kuaishe Wang
About author:
wangkuaishe888@126.com (K. Wang).Hairui Xing, Ping Hu, Shilei Li, Yegai Zuo, Jiayu Han, Xingjiang Hua, Kuaishe Wang, Fan Yang, Pengfa Feng, Tian Chang. Adsorption and diffusion of oxygen on metal surfaces studied by first-principle study: A review[J]. J. Mater. Sci. Technol., 2021, 62: 180-194.
Fig. 1. Different adsorption sites of oxygen molecule vertical and parallel adsorption on Al (111) surface for different coverages:(a) 0.22 mL, (b) 0.5 mL, (c) 1 mL. Adapted with permission from Ref. [60]. Reprinted from Applied Surface Science, 264/4775121288389, J.X. Guo, L.J. Wei, D.Y. Ge, L. Guan, Y.L. Wang, B.T. Liu, Dissociation and reconstruction of O2 on Al (111) studied by First-principles, Copyright (2013), with permission from Elsevier.
Fig. 2. Different adsorption sites of oxygen molecule vertical and parallel adsorption on Al (111) surface for 0.22 mL, 0.5 mL, 1 mL studied by DFT calculations. Reprinted with permission from Ref. [60]. Reprinted from Applied Surface Science, 264/4775121288389, J.X. Guo, L.J. Wei, D.Y. Ge, L. Guan, Y.L. Wang, B.T. Liu, Dissociation and reconstruction of O2 on Al (111) studied by First-principles, Copyright (2013), with permission from Elsevier.
Fig. 3. Densities of states for oxygen coverages from 0 mL to 1 mL on gold (a) and platinum (b) slabs. Adapted with permission from Ref. [94]. Reprinted from Surface Science, 603/4775270657326, Spencer D. Miller, John R. Kitchin, Relating the coverage dependence of oxygen adsorption on Au and Pt fcc (111) surfaces through adsorbate-induced surface electronic structure effects/Copyright (2009), with permission from Elsevier.
Fig. 4. Adsorption energies as calculated by the cluster expansion (+sign) and by direct DFT calculations (squares) on the p (4 × 4) surface. Reprinted with permission from Ref. [95]. Reprinted from Applied Surface Science, 423/4775280705401, Adib J. Samin, Christopher D. Taylor, A first principles investigation of the oxygen adsorption on Zr (0001) surface using cluster expansions, Copyright (2017), with permission from Elsevier.
Fig. 5. Change of binding energy and work function vs coverage of oxygen atoms adsorption at the fcc site and interstitial sites of Al (111) surface and inner surface. Adapted with permission from Ref. [99]. Reprinted from Surface & Interface Analysis, 43/4775291349164, Bao-Ting Liu, Ying‐Long Wang, Qing-Xun Zhao, et al, Oxygen adsorption on Al (111) surface interstitial site calculated by density functional theory, Copyright (2011), with permission from Wiley Online Library.
Fig. 6. Left: densities of states of (a) bare surface, (b) oxygen on the hcp-Nb site, (c) the fcc-2 site. Adapted with permission from Ref. [115]. Reprinted from Computational Materials Science, 139/4775310792828, Yue Li, Jianhong Dai, Yan Song, Rui Yang, Adsorption properties of oxygen atom on the surface of Ti2AlNb by first principles calculations, Copyright (2017), with permission from Elsevier.
Fig. 7. Adsorption energy of atomic oxygen as a function of the number of vacancies on Au (111). Models also show the atoms removed to create three vacancies and the final configuration with the maximum number of vacancies. Reprinted with permission from Ref. [122]. Copyright (2009) American Chemical Society.
Fig. 8. (a) The work functions and (b) change in work function of the alloy (111) surfaces following the adsorption of atomic oxygen to fcc sites at a coverage of 0.25 mL for the cases including and excluding Mo with reference to the clean surface without oxygen. Adapted with permission from Ref. [126]. Reprinted from Corrosion Science, 134/4775321493600, Adib J. Samin, Christopher D. Taylor, First-principles investigation of surface properties and adsorption of oxygen on Ni-22Cr and the role of molybdenum, Copyright (2018), with permission from Elsevier.
Fig. 9. The calculated average binding energies per oxygen atom for the O/Al(111), O/Ti(0001), O/γ-TiAl(111), O/TiAl(111)-1Al, and O/γ-TiAl(111)-2Al systems at the most stable adsorption site as a function of the oxygen coverage. Reprinted with permission from Ref. [139]. Reprinted from Physical Review B, RNP/20/FEB/023040, Shi-Yu Liu et al., Ab initio study of surface self-segregation effect on the adsorption of oxygen on the γ-TiAl (111) surface, Copyright (2009) by the American Physical Society.
Fig. 10. The surface energies of the most stable oxygen atoms adsorbed surfaces as a function of the chemical potential O under the conditions: (a) μTi=-7.8eV, (b) μTi=-8.4eV and (c) μTi=-8.1eV. (d) is the calculated phase diagram for oxygen atoms adsorbed on the different NiTi (110) surfaces as a function of μTi and μO. Adapted with permission from Ref. [150]. Reprinted from Corrosion Science, 106/4775340013701, Yong-Cheng Li, Fu-He Wang, Jia-Xiang Shang, Ab initio study of oxygen adsorption on the NiTi (110) surface and the surface phase diagram, Copyright (2016), with permission from Elsevier.
Fig. 11. Results from the CI-NEB calculations for the Oct-Oct, Tet-Tet, and Tet-Oct’-Tet pathways (a) and a representation of the O atom (red) traversing through Al atoms (blue) for the Tet-Tet and Tet-Oct’-Tet pathway (b) and Oct-Oct pathway (c). Reprinted with permission from Ref. [163]. Reprinted from Computational Materials Science, 140/4775340471698, Guangdong Liu, Zhixiao Liu, Bingyun Ao, Wangyu Hu, Huiqiu Deng, Oxygen adsorption and diffusion on γ-U (001) surface: Effect of titanium, Copyright (2017), with permission from Elsevier.
Fig. 12. Schematic illustrations of the MEPs and the energy profile for O diffusing on different surfaces. Adapted with permission from Ref. [171]. Reprinted from Computational Materials Science, 144/4775350310236, Guangdong Liu, Zhixiao Liu, Bingyun Ao, Wangyu Hu, Huiqiu Deng, Oxygen adsorption and diffusion on γ-U (001) surface: Effect of titanium, Copyright (2018), with permission from Elsevier.
[1] |
T.J. Huang, D.H. Tsai, Catal. Lett. 87 (2003) 173-178.
DOI URL |
[2] |
S. Miquel, S. Robert, Surf. Sci. Rep. 63 (2008) 169-199.
DOI URL |
[3] |
F. Jing, Y. Zhang, S. Luo, W. Chu, H. Zhang, X. Shi, J. Chem. Sci. 122 (2010) 621-630.
DOI URL |
[4] |
G.A. Somorjai, A.S. Mujumdar, Drying Technol. 13 (1995) 507-508.
DOI URL |
[5] |
S. Catherine, G.P.M.R. Karsten, S. Matthias, Surf. Sci. 500 (2002) 368-394.
DOI URL |
[6] |
H. Over, Y.D. Kim, A.P. Seitsonen, S. Wendt, E. Lundgren, M. Schmid, P. Varga, A. Morgante, G. Ertl, Science 287 (2000) 1474-1476.
DOI URL PMID |
[7] |
C. Wei, Q.Q. Ren, J.L. Fan, H.R. Gong, J. Nucl. Mater. 466 (2015) 234-238.
DOI URL |
[8] |
S. Elsebeth, F. Roma, K. Adam, Phys. Rev. B 69 (2004), 115431.
DOI URL |
[9] | A.M. Latyshev, A.V. Bakulin, S.E. Kulkova, Phys. Solid State 59 (2017) 1852-1866. |
[10] | H. Li, L.M. Liu, S.Q. Wang, H.Q. Ye, Acta Metall. Sin. 42 (2006) 897-902 (in Chinese). |
[11] | H. Li, S.Q. Wang, H.Q. Ye, J. Mater. Sci. Technol. 25 (2009) 569-576. |
[12] |
D.R. Hartree, Math. Proc. Cambridge Philos. Soc. 24 (1928) 89-110.
DOI URL |
[13] |
W. Kohn, L.J. Sham, Phys. Rev. 140 (1965) A1133-A1138.
DOI URL |
[14] |
M. Alatalo, S. Jaatinen, P. Salo, K. Laasonen, Phys. Rev. B 70 (2004), 245417.
DOI URL |
[15] |
S. Jaatinen, J. Blomqvist, P. Salo, A. Puisto, M. Alatalo, M. Hirsimäki, M. Ahonen, M. Valden, Phys. Rev. B 75 (2007), 075402.
DOI URL |
[16] |
R. Nityananda, P. Hohenberg, W. Kohn, Resonance 22 (2017) 809-811.
DOI URL |
[17] | M.J. Gillan, Calculating the Properties of Materials from Scratch, Springer, Dordrecht, 1991, pp. 257-281. |
[18] |
P.E. Blochl, Phys. Rev. B 50 (1994) 17953-17979.
DOI URL |
[19] |
P.C. Hohenberg, W. Kohn, Phys. Rev. B 136 (1964) B864-B871.
DOI URL |
[20] |
R. Martin, Electronic Structure: Basic Theory and Practical Methods, 2004 https://10.1017/CBO9780511805769.
DOI URL PMID |
[21] | V. Fock, Zeitschrift fur Physik 61 (1930) 126-148. |
[22] |
D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45 (1980) 566-569.
DOI URL |
[23] |
J.P. Perdew, A. Zunger, Phys. Rev. B 23 (1981) 5048-5079.
DOI URL |
[24] | Y. Kubo, Beyond the Local-density Approximation in Calculations of Compton Profiles, 2006. |
[25] | D. Langreth, J. Perdew, Phys. Rev. B 21 (1980) https://10.1103/PhysRevB.21.5469. |
[26] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.
DOI URL PMID |
[27] |
J.P. Perdew, J.A. Chevary, V.H.K. Jackson, M. Pederson, D. Singh, C. Fiolhais, Phys. Rev. B 46 (1992) 6671-6687.
DOI URL |
[28] |
J. Hafner, J. Comput. Chem. 29 (2008) 2044-2078.
URL PMID |
[29] |
B. Delley, J. Chem. Phys. 113 (2000) 7756-7764.
DOI URL |
[30] |
S. Huzinaga, J. Chem. Phys. 42 (1965) 1293-1302.
DOI URL |
[31] |
S. Wolff, Int. J. Quantum Chem. 104 (2005) 645-659.
DOI URL |
[32] |
K. Schwarz, P. Blaha, Comput. Mater. Sci. 28 (2003) 259-273.
DOI URL |
[33] |
H.J. Limbach, A. Arnold, B.A. Mann, C. Holm, Comput. Phys. Commun. 174 (2006) 704-727.
DOI URL |
[34] |
X. Gonze, J.M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, P. Ghosez, J.Y. Raty, D.C. Allan, Comput. Mater. Sci. 25 (2002) 478-492.
DOI URL |
[35] |
J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez, Portal , J. Phys. Condens. Matter 14 (2002) 2745-2779.
DOI URL |
[36] |
J. Hutter, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2 (2012) 604-612.
DOI URL |
[37] |
B.G. Levine, J.D. Coe, A.M. Virshup, T.J. Martínez, Chem. Phys. 347 (2008) 3-16.
DOI URL |
[38] |
G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6 (1996) 15-50.
DOI URL |
[39] |
G. Kresse, J. Furthmüller, J. Hafner, Phys. Rev. B 50 (1994) 13181-13185.
DOI URL |
[40] | G. Kresse, J. Hafner, J. Non·Cryst. Solids 192-193 (1995) 222-229. |
[41] | S.J. Clark, M. Segall, C.J. Pickardll, P.J. HasnipIl, M.I.J. ProbertIV, K. Refson, M.C. Payne, Zeitschrift für Kristallographie-Crystalline Mater. 220 (2005) 567-570. |
[42] | B. Delley, J. Chim. Phys. 92 (1990) 508-517. |
[43] |
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, J. Phys. Condens. Matter 21 (2009), 395502.
DOI URL |
[44] |
W.E. Pickett, Comput. Phys. Rep. 9 (1989) 115-197.
DOI URL |
[45] |
E. Artacho, E. Anglada, O. Diéguez, J.D. Gale, A. García, J. Junquera, R.M. Martin, P. Ordejón, J.M. Pruneda, D. Sánchez-Portal, J.M. Soler, J. Phys. Condens. Matter 20 (2008), 064208.
DOI URL |
[46] | H. Jónsson, G. Mills, K.W. Jacobsen, Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions, 1998, pp. 385-404. |
[47] | W.J. Lu, X. Guo, Y.D. Feng, C.H. Wu, M. Xu, F.L. Tang, J. Lanzhou Univ. Technol. (2013) 161-166 (in Chinese). |
[48] |
M. Shrensen, K. Jacobsen, H. Jónsson, Phys. Rev. Lett. 77 (1996) 5067-5070.
DOI URL PMID |
[49] | G. Henkelman, H. Johnsson, J. Chem. Phys. 113 (2000) 9978. |
[50] | B. Uberuaga, H. Jonsson, J. Chem. Phys. 113 (2000) 9901-9904. |
[51] |
M. Pozzo, D. Alfè, J. Phys. Condens. Matter 21 (2009), 095004.
DOI URL |
[52] | G. Axel, Catal. Today 260 (2016) 60-65. |
[53] |
P. Junell, K. Honkala, M. Hirsimaki, M. Valden, K. Laasonen, Surf. Sci. 546 (2003) L797-L802.
DOI URL |
[54] |
S.Y. Liem, J.H.R. Clarke, G. Kresse, Surf. Sci. 459 (2000) 104-114.
DOI URL |
[55] |
I.G. Shuttleworth, Appl. Surf. Sci. 346 (2015) 329-334.
DOI URL |
[56] |
S.Y. Sun, P.P. Xu, Y. Ren, X. Tan, G.Y. Li, Curr. Appl. Phys. 18 (2018) 1528-1533.
DOI URL |
[57] |
I. Erikat, B. Hamad, J. Khalifeh, Chem. Phys. 385 (2011) 35-40.
DOI URL |
[58] |
L.J. Wei, J.X. Guo, X.H. Dai, Y.L. Wang, B.T. Liu, Surf. Rev. Lett. 22 (2015), 1550053.
DOI URL |
[59] | J.L. Nie, L. Ao, X.T. Zu, H. Gao, J. Phys. Chem. Solids 75 (2014) 130-135. |
[60] |
J.X. Guo, L.J. Wei, D.Y. Ge, Y.L. Wang, B.T. Liu, Appl. Surf. Sci. 264 (2013) 247-254.
DOI URL |
[61] |
M.N. Huda, A.K. Ray, Int. J. Quantum Chem. 102 (2004) 98-105.
DOI URL |
[62] | S.Q. Huang, X.L. Zeng, S.Y. Xu, X.H. Ju, Comput. Theor. Chem. 1093(2016) 91-97. |
[63] |
S.F. Li, X. Xue, P. Li, X. Li, Y. Jia, Phys. Lett. A 352 (2006) 526-530.
DOI URL |
[64] |
A. Eichler, J. Hafner, Phys. Rev. B 57 (1998) 10110-10114.
DOI URL |
[65] |
A. Eichler, G. Kresse, J. Hafner, Phys. Rev. Lett. 77 (1996) 1119-1122.
DOI URL PMID |
[66] |
A. Gross, S. Wilke, M. Scheffler, Phys. Rev. Lett. 75 (1995) 2718.
DOI URL PMID |
[67] |
M. Lahti, N. Nivalainen, A. Puisto, M. Alatalo, Surf. Sci. 601 (2007) 3774-3777.
DOI URL |
[68] |
L. Martin-Gondre, C. Crespos, P. Larrégaray, Surf. Sci. 688 (2019) 45-50.
DOI URL |
[69] |
J.K. Nørskov, T. Bligaard, A. Logadottir, S. Bahn, L.B. Hansen, M. Bollinger, H. Bengaard, B. Hammer, Z. Sljivancanin, M. Mavrikakis, J. Catal. 209 (2002) 275-278.
DOI URL |
[70] |
X. Ye, A.V. Ruban, M. Mavrikakis, J. Am. Chem. Soc. 126 (2004) 4717-4725.
DOI URL PMID |
[71] |
A. Mhadeshwar, J. Kitchin, M. Barteau, D. Vlachos, Catal. Lett. 96 (2004) 13-22.
DOI URL |
[72] | E. Habenschaden, J. Kuppers, Surf. Sci. Lett. 138 (1984) L147-L150. |
[73] |
D. King, Surf. Sci. 47 (1975) 384-402.
DOI URL |
[74] | G. Ertl, Adv. Catal. 45 (2000) 1-69. |
[75] |
J. Greeley, J. Nørskov, M. Mavrikakis, Ann. Rev. Phys. Chem. 53 (2002) 319-348.
DOI URL |
[76] | J. Kitchin, S. Miller, D.S. Sholl, Density Functional Theory Studies of Alloys in Heterogeneous Catalysis in Specialist Periodical Reports: Chemical Modeling: Applications and Theories, RSC Publishing, 2008. |
[77] |
P. Błónski, A. Kiejna, J. Hafner, Surf. Sci. 590 (2005) 88-100.
DOI URL |
[78] |
A. Kiejna, B. Lundqvist, Phys. Rev. B 63 (2001), 085405.
DOI URL |
[79] |
W.X. Li, C. Stampfl, M. Scheffler, Phys. Rev. B 65 (2002), 075407.
DOI URL |
[80] | W.X. Li, C. Stampfl, M. Scheffler, Phys. Rev. B 67 (2003) 106-110. |
[81] |
M. Nolan, S.A.M. Tofail, Biomaterials 31 (2010) 3439-3448.
DOI URL PMID |
[82] |
Y. Zhou, H. Xiong, Y. Yin, S. Zhong, RSC Adv. 9 (2019) 1752-1758.
DOI URL |
[83] |
S. Aloysius, T. Mira, D. Bernard, S. Catherine, Phys. Rev. B 73 (2006), 165424.
DOI URL |
[84] | R. Getman, Y. Xu, W. Schneider, J. Phys. Chem. C 112 (2008) 9559-9572. |
[85] |
O. Inderwildi, D. Lebiedz, O. Deutschmann, J. Warnatz, J. Chem. Phys. 122 (2005) 34710.
URL PMID |
[86] |
H.Q. Shi, C. Stampfl, Phys. Rev. B 76 (2007), 075327.
DOI URL |
[87] |
H.R. Tang, A. Van Der Ven, B. L. Trout, Mol. Phys. 102 (2004) 273-279.
DOI URL |
[88] |
H.R. Tang, A. Ven, B. Trout, Phys. Rev. B 70 (2004), 045420.
DOI URL |
[89] |
M. Todorova, K. Reuter, M. Scheffler, J. Phys. Chem. B 108 (2004) 14477-14483.
DOI URL |
[90] |
Y. Zhang, V. Blum, K. Reuter, Phys. Rev. B 75 (2007), 235406.
DOI URL |
[91] |
J. Fu, T. Song, X. Liang, G. Zhao, Solid State Commun. 272 (2018) 17-21.
DOI URL |
[92] |
B. Hammer, J.K. Nørskov, Surf. Sci. 343 (1995) 211-220.
DOI URL |
[93] |
S.E. Mason, I. Grinberg, A.M. Rappe, J. Phys. Chem. B 110 (2006) 3816-3822.
DOI URL |
[94] |
S.D. Miller, J.R. Kitchin, Surf. Sci. 603 (2009) 794-801.
DOI URL |
[95] |
A.J. Samin, C.D. Taylor, Appl. Surf. Sci. 423 (2017) 1035-1044.
DOI URL |
[96] |
M. Todorova, W.X. Li, M. Ganduglia-Pirovano, C. Stampfl, K. Reuter, M. Scheffler, Phys. Rev. Lett. 89 (2002), 096103.
DOI URL PMID |
[97] |
M.V. Ganduglia-Pirovano, M. Scheffler, Phys. Rev. B 59 (1999) 15533-15543.
DOI URL |
[98] |
J. Shah, S. Kansara, S.K. Gupta, Y. Sonvane, Phys. Lett. A 381 (2017) 3084-3088.
DOI URL |
[99] |
J.X. Guo, G. Li, B. Fang, Q.X. Zhao, Y.L. Wang, B.T. Liu, Surf. Interface Anal. 43 (2011) 940-944.
DOI URL |
[100] |
J.R. Kitchin, Phys. Rev. B 79 (2009), 205412.
DOI URL |
[101] |
R. Pantel, M. Bujor, J. Bardolle, Surf. Sci. 62 (1977) 589-609.
DOI URL |
[102] |
H. Ishida, K. Terakura, Phys. Rev. B 36 (1987) 4510-4513.
DOI URL |
[103] |
T. Ossowski, A. Kiejna, Surf. Sci. 637-638 (2015) 35-41.
DOI URL |
[104] |
F.H. Wang, S.Y. Liu, J.X. Shang, Y.S. Zhou, Z. Li, J. Yang, Surf. Sci. 602 (2008) 2212-2216.
DOI URL |
[105] |
T. Kangas, K. Laasonen, Surf. Sci. 602 (2008) 3239-3245.
DOI URL |
[106] |
W.X. Li, C. Stampfl, M. Scheffler, Phys. Rev. B 67 (2003), 045408.
DOI URL |
[107] | Q.G. Wang, J.Shang Xiang, Z.X. Yang, J. Phys. Chem. C 116 (2012) 23371-23376. |
[108] |
M. Lee, A.J.H. Mcgaughey, Surf. Sci. 604 (2010) 1425-1431.
DOI URL |
[109] |
M. Todorova, K. Reuter, M. Scheffler, Phys. Rev. B 71 (2005), 195403.
DOI URL |
[110] |
G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169.
DOI URL |
[111] |
X. Tan, J. Zhou, Y. Peng, Appl. Surf. Sci. 258 (2012) 8484-8491.
DOI URL |
[112] |
D.A. Kilimis, C.E. Lekka, Mater. Sci. Eng. B 144 (2007) 27-31.
DOI URL |
[113] | G.G. Khan, N.R. Bandyopadhyay, A. Basumallick, J. Phys. Chem. Solids 70 (2009) 298-302. |
[114] | S.E. Kulkova, A.V. Bakulin, Q.M. Hu, R. Yang, Phys. B 426 (2013) 118-126. |
[115] |
Y. Li, J. Dai, Y. Song, R. Yang, Comput. Mater. Sci. 139 (2017) 412-418.
DOI URL |
[116] |
Y. Song, J.H. Dai, R. Yang, Surf. Sci. 606 (2012) 852-857.
DOI URL |
[117] | K. Fichthorn, M. Scheffler, Substrate Mediated Interaction on Ag(111) Surfaces From First Principles in Collective Diffusion on Surfaces: Correlation Effects and Adatom Interactions, Kluwer Academic Publishers, Boston, 2001. |
[118] |
B. Hammer, Phys. Rev. B 63 (2001), 205423.
DOI URL |
[119] |
I. Lobzenko, Y. Shiihara, A. Sakakibara, Y. Uchiyama, Y. Umeno, Y. Todaka, Appl. Surf. Sci. 493 (2019) 1042-1047.
DOI URL |
[120] |
N. Cherbal, E.H. Megchiche, H. Zenia, K. Lounis, M. Amarouche, Surf. Sci. 663 (2017) 62-70.
DOI URL |
[121] |
S. López-Moreno, A.H. Romero, J. Phys. Chem. 142 (2015), 154702.
DOI URL |
[122] | T. Baker, C. Friend, E. Kaxiras, J. Phys. Chem. C 113 (2009) 3232-3238. |
[123] | W. Steurer, Physical Metallurgy:Crystal Structures of Metallic Elements and Compounds, Elsevier, Oxford, 2014. |
[124] |
N.K. Das, T. Shoji, Appl. Surf. Sci. 258 (2011) 442-447.
DOI URL |
[125] |
N. Das, T. Shoji, Corros. Sci. 73 (2013) 18-31.
DOI URL |
[126] |
A.J. Samin, C.D. Taylor, Corros. Sci. 134 (2018) 103-111.
DOI URL |
[127] |
K.N. Nigussa, J.A. Støvneng, Phys. Rev. B 82 (2010), 245401.
DOI URL |
[128] |
S. Garruchet, O. Politano, P. Arnoux, V. Vignal, Solid State Commun. 150 (2010) 439-442.
DOI URL |
[129] |
H. Zenia, K. Lounis, E.H. Megchiche, C. Mijoule, Comput. Mater. Sci. 124 (2016) 428-437.
DOI URL |
[130] |
C. Zou, Y.K. Shin, A.C.T. van Duin, H. Fang, Z.-K. Liu, Acta Mater. 83 (2015) 102-112.
DOI URL |
[131] |
H. Fang, S. Shang, Y. Wang, Z.K. Liu, D. Alfonso, D.E. Alman, Y.K. Shin, C. Zou, A. van Duin, Y. K. Lei, G. F. Wang, J. Appl. Phys. 115 (2014) 043501-043501.
DOI URL |
[132] | C. Mijoule, E. Megchiche, E. Andrieu, D. Monceau, Defect Diffus. Forum 289-292 (2009) 747-753. |
[133] |
V. Blum, L. Hammer, C. Schmidt, W. Meier, O. Wieckhorst, S. Müller, K. Heinz, Phys. Rev. Lett. 89 (2002), 266102.
DOI URL PMID |
[134] |
C. Jiang, B. Gleeson, Acta Mater. 55 (2007) 1641-1647.
DOI URL |
[135] |
J.R. Kitchin, K. Reuter, M. Scheffler, Phys. Rev. B 77 (2008) 439-446.
DOI URL |
[136] |
A.Y. Lozovoi, A. Alavi, M.W. Finnis, Phys. Rev. Lett. 85 (2000) 610-613.
DOI URL PMID |
[137] |
L.V. Pourovskii, A.V. Ruban, B. Johansson, I.A. Abrikosov, Phys. Rev. Lett. 90 (2003) 026105.
DOI URL PMID |
[138] | X.S. Yuan, C. Song, X.S. Kong, Y.C. Xu, Q.F. Fang, C.S. Liu, Phys. B 425 (2013) 42-47. |
[139] |
S.Y. Liu, J.X. Shang, F.H. Wang, Y. Zhang, Phys. Rev. B 79 (2009), 075419.
DOI URL |
[140] |
S.Y. Liu, J.X. Shang, F.H. Wang, Y. Zhang, J. Phys. Condens. Matter 21 (2009), 225005.
DOI URL |
[141] |
B.G. Kim, G.M. Kim, J.K. Chong, Scr. Metall. Mater. 33 (1995) 1117-11125.
DOI URL |
[142] |
Y. Shida, H. Anada, Oxid. Met. 45 (1996) 197-219.
DOI URL |
[143] |
S. Taniguchi, T. Kuwayama, Y.C. Zhu, Y. Matsumoto, T. Shibata, J. Mater. Sci. Eng. A 277 (2000) 229-236.
DOI URL |
[144] |
S. Taniguchi, K. Uesaki, Y.C. Zhu, Y. Matsumoto, T. Shibata, J. Mater. Sci. Eng. A 266 (1999) 267-275.
DOI URL |
[145] | S.Y. Liu, S.Y. Liu, D. Li, T.M. Drwenski, W.H. Xue, H.L. Dang, S.W. Wang, Phys. Chem. Chem. Phys. 31 (2012) 11160-11166. |
[146] |
P. Agoston, K. Albe, Phys. Rev. B 84 (2011) 1-20.
DOI URL |
[147] |
C. Franchini, G. Parteder, S. Surnev, F.P. Netzer, Phys. Rev. B 73 (2006), 155402.
DOI URL |
[148] |
H.Z. Zhang, S.Q. Wang, Acta Mater. 55 (2007) 4645-4655.
DOI URL |
[149] | S. Piskunov, T. Jacob, E. Spohr, Phys. Rev. B 83 (2011) 589-597. |
[150] |
Y.C. Li, F.H. Wang, J.X. Shang, Corros. Sci. 106 (2016) 137-146.
DOI URL |
[151] |
L. Neelakantan, S. Swaminathan, M. Spiegel, G. Eggeler, A.W. Hassel, Corros. Sci. 51 (2009) 635-641.
DOI URL |
[152] |
L. Wang, J.X. Shang, F.H. Wang, Y. Chen, Y. Zhang, Acta Mater. 61 (2013) 1726-1738.
DOI URL |
[153] |
I. Obot, D. Macdonald, Z. Gasem, Corros. Sci. 99 (2015) 1-30.
DOI URL |
[154] |
N. Das, T. Shoji, Corros. Sci. 73 (2013) 18-31.
DOI URL |
[155] |
N.K. Das, T. Shoji, Corros. Sci. 73 (2013) 18-31.
DOI URL |
[156] |
R.E. Melchers, Corros. Sci. 45 (2003) 923-940.
DOI URL |
[157] |
C. Wert, C. Zener, Phys. Rev. B 76 (1949) 1169-1175.
DOI URL |
[158] | H. Eyring, J. Phys. Chem. 3 (1935) 107. |
[159] | M. Manjeera, The Pennsylvania State University, 2008. |
[160] |
E. Wimmer, J. Sticht, C.B. Geller, R. Najafabadi, G.A. Young, Phys. Rev. B 77 (2008), 134305.
DOI URL |
[161] |
Z.K. Liu, J. Phase Equilib. Diffus. 30 (2009) 517-534.
DOI URL |
[162] | S.L. Shang, Y. Wang, D.E. Kim, Z.K. Liu, Comput. Mater. Sci. 47 (2010) 0-1048. |
[163] |
A.J. Ross, H.Z. Fang, S.L. Shang, G. Lindwall, Z.K. Liu, Comput. Mater. Sci. 140 (2017) 47-54.
DOI URL |
[164] |
C.L. Fu, M. Krcmar, G.S. Painter, X.Q. Chen, Phys. Rev. Lett. 99 (2007), 225502.
URL PMID |
[165] |
S.E. Kulkova, A.V. Bakulin, Q.M. Hu, R. Yang, Comput. Mater. Sci. 97 (2015) 55-63.
DOI URL |
[166] |
S.L. Shang, H.Z. Fang, J. Wang, C.P. Guo, Y. Wang, P.D. Jablonski, Y. Du, Z.K. Liu, Corros. Sci. 83 (2014) 94-102.
DOI URL |
[167] |
H.Z. Fang, S.L. Shang, Y. Wang, Z.K. Liu, D. Alfonso, D.E. Alman, Y.K. Shin, C.Y. Zou, A.C.T. van Duin, Y.K. Lei, J. Appl. Phys. 115 (2014), 043501.
DOI URL |
[168] |
J.J. Kim, H.S. Sang, A.J. Ju, J.C. Kyung, H.K. Ji, Appl. Phys. Lett. 100 (2012), 131904.
DOI URL |
[169] | C. Mijoule, E.H. Megchiche, E. Andrieu, D. Monceau, Defect Diffus. Forum 289-292 (2009) 747-753. |
[170] |
M. Guiltat, M. Brut, S. Vizzini, A. Hémeryck, Surf. Sci. 657 (2017) 79-89.
DOI URL |
[171] |
G.D. Liu, Z.X. Liu, B.Y. Ao, W.Y. Hu, H.Q. Deng, Comput. Mater. Sci. 144 (2018) 85-91.
DOI URL |
[172] |
S. Chen, M.L. Giorgi, J.B. Guillot, G. Geneste, Appl. Surf. Sci. 258 (2012) 8613-8618.
DOI URL |
[1] | Cean Guo, Feng Zhou, Minghui Chen, Jinlong Wang, Shenglong Zhu, Fuhui Wang. An in-situ formed ceramic/alloy/ceramic sandwich barrier to resist elements interdiffusion between NiCrAlY coating and a Ni-based superalloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 1-11. |
[2] | Yanli Lu, Yi Wang, Yifan Wang, Meng Gao, Yao Chen, Zheng Chen. First-principles study on the mechanical, thermal properties and hydrogen behavior of ternary V-Ni-M alloys [J]. J. Mater. Sci. Technol., 2021, 70(0): 83-90. |
[3] | Guoguo Xi, Lei Zuo, Xuan Li, Yu Jin, Ran Li, Tao Zhang. In-situ constructed Ru-rich porous framework on NiFe-based ribbon for enhanced oxygen evolution reaction in alkaline solution [J]. J. Mater. Sci. Technol., 2021, 70(0): 197-204. |
[4] | Bing Yang, Gang He, Wenhao Wang, Yongchun Zhang, Chong Zhang, Yufeng Xia, Xiaofen Xu. Diffusion-activated high performance ZnSnO/Yb2O3 thin film transistors and application in low-voltage-operated logic circuits [J]. J. Mater. Sci. Technol., 2021, 70(0): 49-58. |
[5] | Peixing Chen, Sixiang Wang, Zhi Huang, Yan Gao, Yu Zhang, Chunli Wang, Tingting Xia, Linhao Li, Wanqian Liu, Li Yang. Multi-functionalized nanofibers with reactive oxygen species scavenging capability and fibrocartilage inductivity for tendon-bone integration [J]. J. Mater. Sci. Technol., 2021, 70(0): 91-104. |
[6] | Seung Woo Lee, Bongho Lee, Chaekyung Baik, Tae-Yang Kim, Chanho Pak. Multifunctional Ir-Ru alloy catalysts for reversal-tolerant anodes of polymer electrolyte membrane fuel cells [J]. J. Mater. Sci. Technol., 2021, 60(0): 105-112. |
[7] | Jiachen Zhang, Lin Liu, Taiwen Huang, Jia Chen, Kaili Cao, Xinxin Liu, Jun Zhang, Hengzhi Fu. Coarsening kinetics of γ′ precipitates in a Re-containing Ni-based single crystal superalloy during long-term aging [J]. J. Mater. Sci. Technol., 2021, 62(0): 1-10. |
[8] | Jiajun Qiu, Lu Liu, Shi Qian, Wenhao Qian, Xuanyong Liu. Why does nitrogen-doped graphene oxide lose the antibacterial activity? [J]. J. Mater. Sci. Technol., 2021, 62(0): 44-51. |
[9] | Hanxun Wang, Baichun Hu, Zisen Gao, Fengjiao Zhang, Jian Wang. Emerging role of graphene oxide as sorbent for pesticides adsorption: Experimental observations analyzed by molecular modeling [J]. J. Mater. Sci. Technol., 2021, 63(0): 192-202. |
[10] | Xiaoxue Yuan, Ran Liu, Wenchang Zhang, Xiaoqiang Song, Lei Xu, Yan Zhao, Lei Shang, Jingsong Zhang. Preparation of carboxylmethylchitosan and alginate blend membrane for diffusion-controlled release of diclofenac diethylamine [J]. J. Mater. Sci. Technol., 2021, 63(0): 210-215. |
[11] | Yuqiao Dong, Jiaqi Li, Dake Xu, Guangling Song, Dan Liu, Haipeng Wang, M.Saleem Khan, Ke Yang, Fuhui Wang. Investigation of microbial corrosion inhibition of Cu-bearing 316L stainless steel in the presence of acid producing bacterium Acidithiobacillus caldus SM-1 [J]. J. Mater. Sci. Technol., 2021, 64(0): 176-186. |
[12] | Bin Zhang, Yuping Duan, Haifeng Zhang, Shuo Huang, Guojia Ma, Tongmin Wang, Xinglong Dong, . Magnetic transformation of Mn from anti-ferromagnetism to ferromagnetism in FeCoNiZMnx (Z = Si, Al, Sn, Ge) high entropy alloys [J]. J. Mater. Sci. Technol., 2021, 68(0): 124-131. |
[13] | Hongyan Wang, Ran Wei, Xiumin Li, Xuli Ma, Xiaogang Hao, Guoqing Guan. Nanostructured amorphous Fe29Co27Ni23Si9B12 high-entropy-alloy: an efficient electrocatalyst for oxygen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 68(0): 191-198. |
[14] | Tingru Chen, Yusuke Asakura, Takuya Hasegawa, Teruki Motohashi, Shu Yin. A simple and novel effective strategy using mechanical treatment to improve the oxygen uptake/release rate of YBaCo4O7+δ for thermochemical cycles [J]. J. Mater. Sci. Technol., 2021, 68(0): 8-15. |
[15] | Zhihong Luo, Fujie Li, Chengliang Hu, Liankun Yin, Degui Li, Chenhao Ji, Xiangqun Zhuge, Kui Zhang, Kun Luo. Highly dispersed silver nanoparticles for performance-enhanced lithium oxygen batteries [J]. J. Mater. Sci. Technol., 2021, 73(0): 171-177. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||