J. Mater. Sci. Technol. ›› 2021, Vol. 62: 203-213.DOI: 10.1016/j.jmst.2020.05.042
• Research Article • Previous Articles Next Articles
Tong Yanga, Yi Konga, Jiangbo Lub, Zhenjun Zhangc, Mingjun Yanga, Ning Yand, Kai Lia,d,*(), Yong Dua,d,*(
)
Received:
2020-03-17
Revised:
2020-04-22
Accepted:
2020-05-10
Published:
2021-01-30
Online:
2021-02-01
Contact:
Kai Li,Yong Du
About author:
yong-du@csu.edu.cn (Y. Du).Tong Yang, Yi Kong, Jiangbo Lu, Zhenjun Zhang, Mingjun Yang, Ning Yan, Kai Li, Yong Du. Self-accommodated defect structures modifying the growth of Laves phase[J]. J. Mater. Sci. Technol., 2021, 62: 203-213.
Temperature (K) | Perfect C14 | With 2R + 3R | With 2R + $\overline{2}$R |
---|---|---|---|
0 | -1.49804 | -1.49853 | -1.49836 |
300 | -1.42242 | -1.42309 | -1.42227 |
393 | -1.40056 | -1.40012 | -1.40119 |
Table 1 Total energy (eV/atom) calculated by MD for each crystal structure at different temperatures. Precision is 0.00001 ev/atom.
Temperature (K) | Perfect C14 | With 2R + 3R | With 2R + $\overline{2}$R |
---|---|---|---|
0 | -1.49804 | -1.49853 | -1.49836 |
300 | -1.42242 | -1.42309 | -1.42227 |
393 | -1.40056 | -1.40012 | -1.40119 |
Fig. 1. Different morphologies of η-MgZn2 precipitates growing along the same orientation (η2). (a) Low magnification bright field images of nano-sized η precipitates in an overaged Al-Zn-Mg alloy. (b) Frequency count histogram of precipitates with different aspect ratios, taken from Fig. S2 like (a). (c) HRTEM image of one thin η2 precipitate in a white circle in (a). (d) HRTEM image of one thick η2 precipitate in a red circle in (a). All view direction are along [1$\overline{1}$2]Al.
Fig. 2. Defects in MgZn2 precipitates. (a, b) HAADF-STEM image of η2 precipitates containing 2R stacking faults on the edges. One precipitate is thin in (a) and another one is a bit thicker in (b). (c) HAADF-STEM image of an η2 precipitate containing 2R + 3R stacking faults and an irregular planar defect intersecting them. (d) Structural model for the area in the blue dashed rectangle in (c). All images are viewed along [1$\overline{1}$2]Al // [$\overline{1}$2$\overline{1}$0]η.
Fig. 3. Comparison among various defect structures in η2 precipitates. (a) HAADF-STEM image of a thick η2 precipitate with parallel 2R + 3R stacking faults and planar defects (in orange), the precipitate nucleates on an Al3Zr particle. (b) HAADF-STEM image of a thick η2 precipitate with reversed 2R + -2R / 2R + $\overline{3}$R stacking faults. (c) HAADF-STEM image of a standard thin C14 η2-MgZn2 precipitate. (d-f) Enlargements areas in blue dashed rectangles in (a-c), respectively. C14 crystal model and QSTEM simulated image are overlaid on (f). All precipitates with different morphologies have the same axis.
Fig. 4. Strain analysis of various η2 precipitates. (a-c) GPA images of a standard C14 η-MgZn2 precipitate (as in Fig. 3(c)), exx and eyy in (b) and (c), respectively. (d-f) GPA images of an η2 precipitate with one 2R (in Fig. 2(a)), exx and eyy in (e) and (f), respectively. (g-i) GPA images of an η2 precipitate (as in Fig. 3(b)) with reversed stacking faults, exx and eyy in (i) and (j), respectively. (j-l) GPA images of an η2 precipitate (as in Fig. 2(c)) with parallel stacking faults and planar defect, exx and eyy in (m) and (n), respectively. The reference region in each HAADF-STEM image is the farthest matrix (in the same image) away from the precipitate. All GPA in this work use the same parameters (shown in Supplementary Fig. S1).
Fig. 5. Five-fold symmetry structure. (a) HAADF-STEM images of round η precipitates with complicated defects including five-fold symmetry structures. (b) Atomic structure model for part of defects in (a). (c) Atomic structure model of the 72° rhombus unit. (d) Atomic structure model of the 72° flattened hexagon unit.
Fig. 8. Schematic diagram for different growth behaviors of Laves phase precipitates reported in this work. A precipitate at the nucleating stage occurring in the alloy aged for 568 h was observed as inserted in the left part, in the same growth direction as η2.
Precipitate | Perfect C14 ( | With 2R ( | With 2R + $\overline{2}$R ( | With 2R + 3R ( |
---|---|---|---|---|
dV/V | -0.88 % | -0.17 %a | -0.38 % | 0.04 % |
Table 2 Semi-quantified volumetric shrink/expansion caused by various η2 precipitates studied in this work.
Precipitate | Perfect C14 ( | With 2R ( | With 2R + $\overline{2}$R ( | With 2R + 3R ( |
---|---|---|---|---|
dV/V | -0.88 % | -0.17 %a | -0.38 % | 0.04 % |
[1] | J.D. Livingstom, Phys. Stat. Sol. 131 (1992) 415-423. |
[2] | C.T. Liu, J.H. Zhu, M.P. Brady, C.G. McKamey, L.M. Pike, Intermetallics 8 (2000) 1119-1129. |
[3] |
H. Xie, H. Pan, Y. Ren, L. Wang, Y. He, X. Qi, G. Qin, Phys. Rev. Lett. 120 (2018), 085701.
DOI URL PMID |
[4] | J.L. Guénolé, F.Z. Mouhib, L. Huber, B. Grabowski, S. Korte-Kerzel, Scr. Mater. 166 (2019) 134-138. |
[5] | A.J. Knowles, A. Bhowmik, S. Purkayastha, N.G. Jones, F. Giuliani, W.J. Clegg, D. Dye, H.J. Stone, Scr. Mater. 140 (2017) 59-62. |
[6] | F. Stein, M. Palm, G. Sauthoff, Intermetallics 12 (2004) 713-720. |
[7] |
W. Zhang, R. Yu, K. Du, Z. Cheng, J. Zhu, H. Ye, Phys. Rev. Lett. 106 (2011), 165505.
URL PMID |
[8] | P.M. Hazzledine, P. Pirouz, Scr. Metall. Mater. 28 (1993) 1277-1282. |
[9] |
K. Kim, M.W. Schulze, A. Arora, R.M. Lewis, M.A. Hillmyer, K.D. Dorfman, F.S. Bates, Science 356 (2017) 520-523.
DOI URL PMID |
[10] |
C. Peiderer, M. Uhlarz, S.M. Hayden, R. Vollmer, H.V. Lohneysen, N.R. Bernhoeft, G.G. Lonzarichk, Nature 412 (2001) 58-61.
DOI URL PMID |
[11] | Y.P. Liu, J.D. Livingstom, S.M. Allen, Metall. Mater. Trans. A 26 (1995) 1441-1447. |
[12] |
A.P. Hynninen, J.H. Thijssen, E.C. Vermolen, M. Dijkstra, A. van Blaaderen, Nat. Mater. 6 (2007) 202-205.
DOI URL PMID |
[13] | J. Pavlu, J. Vrest’ál, M. Sob, Calphad 33 (2009) 382-387. |
[14] | L. Ma, T.W. Fan, B.Y. Tang, L.M. Peng, W.J. Ding, Eur. Phys. J. B 86 (2013) 188. |
[15] | Y. Komura, K. Tokunaga, Acta Cryst. B 36 (1980) 1548-1554. |
[16] |
C. Liu, G. Li, F. Yuan, F. Han, Y. Zhang, H. Gu, Nanoscale 10 (2018) 2249-2254.
DOI URL PMID |
[17] | C.D. Marioara, W. Lefebvre, S.J. Andersen, J. Friis, J. Mater. Sci. 48 (2013) 3638-3651. |
[18] |
M.F. Chisholm, S. Kumar, P. Hazzledine, Science 307 (2005) 701-703.
DOI URL PMID |
[19] | A. Bendo, K. Matsuda, S. Lee, K. Nishimura, N. Nunomura, H. Toda, M. Yamaguchi, T. Tsuru, K. Hirayama, K. Shimizu, H. Gao, K. Ebihara, M. Itakura, T. Yoshida, S. Murakami, J. Mater. Sci. 53 (2017) 4598-4611. |
[20] |
T.F. Chung, Y.L. Yang, M. Shiojiri, C.N. Hsiao, W.C. Li, C.S. Tsao, Z.S. Shi, J.G. Lin, J.R. Yang, Acta Mater. 174 (2019) 351-368.
DOI URL |
[21] |
M. Andrade, M. Chandrasekaran, L. Delaey, Acta Metall. 32 (1984) 1809-1816.
DOI URL |
[22] |
N. Bogdan, B. Alexander, Phase Transit. 16 (1989) 555-559.
DOI URL |
[23] |
A. Bendo, K. Matsuda, A. Lervik, T. Tsuru, K. Nishimura, N. Nunomura, R. Holmestad, C.D. Marioara, K. Shimizu, H. Toda, M. Yamaguchi, Mater. Charact. 158 (2019), 109958.
DOI URL |
[24] |
A. Lervik, C.D. Marioara, M. Kadanik, J.C. Walmsley, B. Milkereit, R. Holmestad, Mater. Des. 186 (2020), 108204.
DOI URL |
[25] | T.F. Chung, Y.L. Yang, B.M. Huang, Z. Shi, J. Lin, T. Ohmura, J.R. Yang, Acta Mater. 149 (2018) 377-387. |
[26] | J. Gjønnes, C.J. Simensen, Acta Metall. 18 (1970) 881-890. |
[27] | G. Yuan, G. Cao, Q. Yue, L. Yang, J. Hu, G. Shao, J. Alloys. Compd. 658 (2016) 494-499. |
[28] | H. Chen, J. Lu, Y. Kong, K. Li, T. Yang, A. Meingast, M. Yang, Q. Lu, Y. Du, Acta Mater. 185 (2020) 193-203. |
[29] | T. Saito, F.J.H. Ehlers, W. Lefebvre, D. Hernandez-Maldonado, R. Bjørge, C.D. Marioara, S.J. Andersen, R. Holmestad, Acta Mater. 78 (2014) 245-253. |
[30] |
K. Watanabea, Y. Kotakab, N. Nakanishic, T. Yamazakic, I. Hashimotoc, M. Shiojirid, Ultramicroscopy 92 (2002) 191-199.
DOI URL PMID |
[31] | C.T. Koch, Determination of Core Structure Periodicity and Point Defect Density Along Dislocations, Ph.D, Arizona State University, 2002. |
[32] | R. Kilaas, J. Microsc. 190 (1998) 45-51. |
[33] | S. Wenner, J. Friis, C.D. Marioara, R. Holmestad, J. Alloys. Compd. 684 (2016) 195-200. |
[34] | J. Douin, P. Donnadieu, F. Houdellier, Acta Mater. 58 (2010) 5782-5788. |
[35] |
L. Jones, S. Wenner, M. Nord, P.H. Ninive, O.M. Lovvik, R. Holmestad, P.D. Nellist, Ultramicroscopy 179 (2017) 57-62.
URL PMID |
[36] | Useful Plugins and Scripts for Digital Micrograph, 2016. |
[37] | M.J. Hytch, F. Houdellier, Microelectron. Eng. 84 (2007) 460-463. |
[38] |
X. Gabaix, P. Gopikrishnan, V. Plerou, H.E. Stanley, Nature 423 (2003) 267-270.
DOI URL PMID |
[39] | R.L. Chung, Appl. Phys. Lett. 91 (2007), 231902. |
[40] | S. Plimpton, J. Comput. Phys. 117 (1995) 1-19. |
[41] | D.E. Dickel, M.I. Baskes, I. Aslam, C.D. Barrett, Model. Simul. Mater. Sci. Eng. 26 (2018), 045010. |
[42] | X. Xu, J. Zheng, Z. Li, R. Luo, B. Chen, Mater. Sci. Eng. A 691 (2017) 60-70. |
[43] | F. Cao, J. Zheng, Y. Jiang, B. Chen, Y. Wang, T. Hu, Acta Mater. 164 (2019) 207-219. |
[44] | K. Li, M. Song, Y. Du, Y. Tang, H. Dong, S. Ni, J. Alloys. Compd. 602 (2014) 312-321. |
[45] |
L. Bindi, P.J. Steinhardt, N. Yao, P.J. Lu, Science 324 (2009) 1306-1309.
DOI URL PMID |
[46] | D. Levine, Phys. Rev. Lett. 53 (1984) 2477-2480. |
[47] | A. Singh, J.M. Rosalie, Crystals 8 (2018) 194. |
[48] | J.M. Rosalie, H. Somekawa, A. Singh, T. Mukai, Philos. Mag. 90 (2010) 3355-3374. |
[49] |
H. Xie, H. Pan, Y. Ren, S. Sun, L. Wang, H. Zhao, B. Liu, S. Li, G. Qin, J. Phys. Chem. Lett. 9 (2018) 4373-4378.
DOI URL PMID |
[50] |
A. Singh, Sci. Technol. Adv. Mater. 15 (2014), 044803.
DOI URL PMID |
[51] | G. Cao, Y. Yun, L. Yang, G. Yuan, Q. Yue, G. Shao, J. Hu, Mater. Lett. 191 (2017) 203-205. |
[52] |
Z. Yang, L. Zhang, M.F. Chisholm, X. Zhou, H. Ye, S.J. Pennycook, Nat. Commun. 9 (2018) 809.
DOI URL PMID |
[53] |
B.Y. Liu, J. Wang, B. Li, L. Lu, X.Y. Zhang, Z.W. Shan, J. Li, C.L. Jia, J. Sun, E. Ma, Nat. Commun. 5 (2014) 3297.
DOI URL PMID |
[54] |
M. Lentz, M. Risse, N. Schaefer, W. Reimers, I.J. Beyerlein, Nat. Commun. 7 (2016) 11068.
DOI URL PMID |
[55] | J. Shen, V. Gärtnerová, L.J. Kecskes, K. Kondoh, A. Jäger, Q. Wei, Mater. Sci. Eng. A 669 (2016) 110-117. |
[56] | G. Cao, Y. Yun, H. Xu, G. Yuan, J. Hu, G. Shao, Corros. Sci. 152 (2019) 54-59. |
[1] | Daqiang Jiang, Zhenghao Jia, Hong Yang, Yinong Liu, Fangfeng Liu, Xiaohua Jiang, Yang Ren, Lishan Cui. Large elastic strains and ductile necking of W nanowires embedded in TiNi matrix [J]. J. Mater. Sci. Technol., 2021, 60(0): 56-60. |
[2] | Guangrong Li, Chunhua Tang, Guanjun Yang. Dynamic-stiffening-induced aggravated cracking behavior driven by metal-substrate-constraint in a coating/substrate system [J]. J. Mater. Sci. Technol., 2021, 65(0): 154-163. |
[3] | Huabei Peng, Dian Wang, Qi Liao, Yuhua Wen. Degeneration and rejuvenation of shape memory effect associated with the precipitation of coherent nano-particles in a Co-Ni-Si shape memory alloy [J]. J. Mater. Sci. Technol., 2021, 76(0): 150-155. |
[4] | Tao Zheng, Xiaobing Hu, Feng He, Qingfeng Wu, Bin Han, Chen Da, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai, Zhenhai Xia, C.T. Liu. Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging [J]. J. Mater. Sci. Technol., 2021, 69(0): 156-167. |
[5] | Yi Yang, Di Xu, Sheng Cao, Songquan Wu, Zhengwang Zhu, Hao Wang, Lei Li, Shewei Xin, Lei Qu, Aijun Huang. Effect of strain rate and temperature on the deformation behavior in a Ti-23.1Nb-2.0Zr-1.0O titanium alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 52-60. |
[6] | P.L. Niu, W.Y. Li, D.L. Chen. Tensile and cyclic deformation response of friction-stir-welded dissimilar aluminum alloy joints: Strain localization effect [J]. J. Mater. Sci. Technol., 2021, 73(0): 91-100. |
[7] | Mingjun Li, Li Nan, Chunyong Liang, Ziqing Sun, Lei Yang, Ke Yang. Antibacterial behavior and related mechanisms of martensitic Cu-bearing stainless steel evaluated by a mixed infection model of Escherichia coli and Staphylococcus aureus in vitro [J]. J. Mater. Sci. Technol., 2021, 62(0): 139-147. |
[8] | Yan Chong, Tilak Bhattacharjee, Yanzhong Tian, Akinobu Shibata, Nobuhiro Tsuji. Deformation mechanism of bimodal microstructure in Ti-6Al-4V alloy: The effects of intercritical annealing temperature and constituent hardness [J]. J. Mater. Sci. Technol., 2021, 71(0): 138-151. |
[9] | Chao Wang, Qiang Li, Weiming Zhang, Huiqing Fan. Large electric field-induced strain in the novel BNKTAN-BNBLTZ lead-free ceramics [J]. J. Mater. Sci. Technol., 2020, 45(0): 15-22. |
[10] | G.Y. Li, L.F. Cao, J.Y. Zhang, X.G. Li, Y.Q. Wang, K. Wu, G. Liu, J. Sun. An insight into Mg alloying effects on Cu thin films: microstructural evolution and mechanical behavior [J]. J. Mater. Sci. Technol., 2020, 57(0): 101-112. |
[11] | Xiaoqiang Li, Chunlong Cheng, Qichi Le, Lei Bao, Peipeng Jin, Ping Wang, Liang Ren, Hang Wang, Xiong Zhou, Chenglu Hu. Investigation of Portevin-Le Chatelier effect in rolled α-phase Mg-Li alloy during tensile and compressive deformation [J]. J. Mater. Sci. Technol., 2020, 52(0): 152-161. |
[12] | Zhen Chen, Daoyong Cong, Yin Zhang, Xiaoming Sun, Runguang Li, Shaohui Li, Zhi Yang, Chao Song, Yuxian Cao, Yang Ren, Yandong Wang. Intrinsic two-way shape memory effect in a Ni-Mn-Sn metamagnetic shape memory microwire [J]. J. Mater. Sci. Technol., 2020, 45(0): 44-48. |
[13] | Liying Zhou, Wenxiong Chen, Shaobo Feng, Mingyue Sun, Bin Xu, Dianzhong Li. Dynamic recrystallization behavior and interfacial bonding mechanism of 14Cr ferrite steel during hot deformation bonding [J]. J. Mater. Sci. Technol., 2020, 43(0): 92-103. |
[14] | Jiangguli Peng, Wenbin Liu, Jiangtao Zeng, Liaoying Zheng, Guorong Li, Anthony Rousseau, Alain Gibaud, Abdelhadi Kassiba. Large electromechanical strain at high temperatures of novel <001> textured BiFeGaO3-BaTiO3 based ceramics [J]. J. Mater. Sci. Technol., 2020, 48(0): 92-99. |
[15] | Jing Xu, Zhouping Wang, Yongfa Zhu. Highly efficient visible photocatalytic disinfection and degradation performances of microtubular nanoporous g-C3N4 via hierarchical construction and defects engineering [J]. J. Mater. Sci. Technol., 2020, 49(0): 133-143. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||